
i
i

“climate˙voting” — 2016/3/12 — 17:23 — page 1 — #1 i
i

i
i

i
i
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The electoral fate of standing politicians depends heavily upon vot-
ers’ well-being. Might climate change – by amplifying threats to
human well-being – cause standing democratic politicians and par-
ties to lose office more frequently? Here I conduct the first-ever
investigation of the relationship between temperature, electoral re-
turns, and future climate change. Using data from over 1.5 billion
votes in over 4,800 electoral contests held in 19 countries between
1925 and 2011, coupled with meteorological data, I show that annual
temperatures above 16◦C-21◦C (60◦F-70◦F) markedly decrease of-
ficeholders’ vote share. I combine these empirical estimates with an
ensemble of climate models to project the impact of climate change
on the fate of future officeholders. Forecasts indicate that by 2099
climate change may reduce average standing party vote share by over
five percentage points in nations with already weak democratic insti-
tutions, causing incumbent parties and their politicians to lose office
with increasing frequency. These findings indicate that exogenously
driven democratic turnover may be the most regular and pervasive
potential impact of climate change on political systems.

climate change impacts | democratic stability | elections | voter behaviors

Abbreviations:
◦
C, degrees Celsius; Temp., temperature; SI, supplemental information

Reductions in voter well-being regularly cause democratic
politicians to lose office. This is because voters consider

their own well-being and the well-being of those around them
when deciding how to cast their ballots [1]. When voters are
doing well they more frequently vote for their standing politi-
cians [2]. When voters are doing poorly, whether economically
or psychologically, they vote for political challengers at higher
rates [3]. Importantly, scholars have determined that climate
change is likely to undermine future economic [4] and psy-
chological [5] well-being. Might climate change – by reducing
citizens’ well-being – induce voters to cast out their incumbent
politicians at increasing rates in the future?

That diminished voter well-being can produce electoral
losses for standing politicians is one of the most extensively
documented findings in political science [6]. Most studies focus
on the ways that economic outcomes can affect ballot choices,
with the conclusion that reductions in macroeconomic per-
formance often precede incumbent politicians’ electoral losses
[7, 8, 9, 10, 11, 12]. Tufte (1978) articulated this relationship
as a basic principle of politics: “When you think of economics,
think elections; when you think of elections, think economics”
[13]. Yet, alterations in well-being not directly tied to the for-
mal economy can also shape voter behaviors. Harmful events
such as hurricanes [14, 15], tornadoes [16], floods [17, 18, 19],
and droughts [20, 21, 22] have also shaped the outcome of his-
torical electoral contests. Even more minor reductions in psy-
chological well-being, such as the loss of a favored sports team,
have been linked to fewer ballots cast for standing politicians
[23].

Climate change induced warming is likely to reduce future
economic well-being [24, 25, 26] in both rich [4, 27] and poor
[28] countries, in part by reducing individual productivity [29],
and is likely to amplify the incidence and severity of extreme
weather events [30, 31, 32]. Future warming may also un-
dermine human psychological well-being through mechanisms
directly tied to increases in temperature extremes, such as
worsened emotional states [33, 34]. These projected impacts
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Fig. 1. Incumbent party vote share declines with increases
in annual temperature. Panel (a) depicts the relationship
between average annual temperature and changes in the
constituency-level vote share of national lower house in-
cumbent politicians from 1,256 constituencies across 19
countries between 1925 and 2011. Points represent the av-
erage change in incumbent vote share for each 5◦C annual
temperature bin. The line represents a loess smoothing of
the raw data. Panel (b) draws from the estimation of the
fixed effects model in Equation 1 and plots the predicted
change in vote share associated with each 5◦C temperature
bin. As annual temperature increases beyond 16-21◦C (60-
70◦F), changes to incumbent vote share become markedly
negative. Shaded error bounds represent 95% confidence
intervals.

of global climate change include many of the exact weather and

Significance

Scholars have examined the possible extreme political conse-
quences of climate change such as increased civil conflict, violent
protest, and state failure. However, most political and policy
change does not arise through violence; instead, change most
often arises via elections. Before citizens rebel, they protest.
Before they protest – at least in democracies – they vote. Here
I explore how voters might respond to the likely impacts of cli-
mate change. I find that hotter annual temperatures decrease
the vote share of standing parties, amplifying their probabil-
ity of electoral loss. Model forecasts indicate that unmitigated
climate change may speed democratic turnover in the future.
These added political threats may shorten parties’ electoral time-
horizons, magnifying the political difficulty of implementing long-
run climate adaptation and mitigation policies.

Reserved for Publication Footnotes
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climate-induced stressors that have historically caused incum-
bent democratic politicians to lose votes. Thus, a changing
climate may indeed induce citizens to cast out their incumbent
politicians with increasing rapidity. Yet, while this hypothesis
flows readily from over a century of literature, this study is
the first to explore it.

Here I conduct a multi-national investigation of the relation-
ship between historical temperatures and constituency-level
electoral outcomes and link these findings to predictions of fu-
ture climatic changes. I examine four questions. First, have
exogenous increases in temperature harmed the historical vote
share of officeholding democratic parties? Second, do the ef-
fects of hotter temperatures vary by level of economic devel-
opment or by density of agriculture? Third, might climate
change alter constituency-level vote share in the future? Fi-
nally, which countries may see the highest future increases in
warming-induced democratic turnover?

Temperature and Changes to Incumbent Vote Share
To investigate if hotter temperatures have indeed reduced

historical incumbent party vote share, I employ a dataset of
constituency-level electoral returns based on over 1.5 billion
votes cast in over 4,800 electoral contests held in 19 countries
between 1925 and 2011 [35]. I link these data to constituency
spatial boundaries to map historical monthly meteorological
conditions onto each electoral constituency [36] (see Supple-
mental Information (SI): Data Description and SI: Map of
Constituency Boundaries). The theoretical relationship of in-
terest is the total causal effect of constituency-level average
annual temperature in the year prior to an election on changes
in the vote share of major incumbent party politicians. I em-
pirically model this relationship as:

∆Yit = f(tempit) + precipit + αi + ζm + γt + νjt + εit [1]

I control for precipitation (precipit) as it is correlated with
temperature but could independently cause changes in voter
behaviors [37] (though excluding precipitation does not no-
tably alter parameter estimates, see SI: Main Effect). In
this time-series cross-sectional model, i indexes electoral con-
stituencies, j indexes countries, m indexes election months,
and t indexes election years. ∆Yit represents the change in
vote share of the incumbent party (Yit − Yit−1), defined as
the party that won the plurality of votes in that constituency
in the prior election [38]. Taking this first difference removes
from the data potentially confounding secular factors – like
strength of incumbent party – that may evolve incrementally
in each electoral constituency over time [4].

The main independent variable of interest, tempit, repre-
sents the average temperature over the twelve months prior to
an election held in month m for constituency i in country j
and year t (see SI: Temperature and Precipitation). The rela-
tionship of interest is represented by f(), which I implement
empirically using indicator variables for each 5◦C annual tem-
perature bin, allowing for flexible estimation of a non-linear
relationship [39, 29] between temperature and alterations in
incumbent party vote share (the functional form remains sim-
ilar across the use of 2◦C or 1◦C temperature bins, see SI:
Alternative Temperature Bins).

Unobserved geographic or temporal factors may influence
electoral outcomes in a way that correlates with temperature.
For example, voters may be better off on average in constituen-
cies that have better legal institutions, in certain months of
the year, or in years with better global economic performance.
To ensure that these factors do not bias estimates of the effect
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Fig. 2. Hot temperatures produce declines in incumbent vote
share in both rich and poor countries. Panel (a) plots the
predicted changes in incumbent party vote share associ-
ated with estimating Equation 1 on the sample of above-
median income countries in the data and panel (b) plots
this relationship for constituencies in countries falling be-
low median income [4]. Past 21◦C, changes in incumbent
vote share again decline for both, though rich country de-
clines are significant only at the p<0.10 level. Shaded error
bounds represent 95% confidence intervals.

of temperature on incumbent party vote share, I include in
Equation 1 three terms, αi, ζm, and γt, that represent con-
stituency, electoral month, and calendar year of election in-
dicator variables, respectively. These variables control for all
constant unobserved characteristics for each constituency and
for each election month and year [40]. Further, there may be
unobserved, country-specific factors that influence changes in
political outcomes over time [4]. In order to control for these
potential confounds I include νjt in Equation 1, representing
country-specific year indicator variables (results are robust to
the use of continent-specific year indicators instead, see SI:
Time and Location Controls). The identifying assumption,
consistent with the literature [41], is that annual tempera-
ture is as good as random after conditioning on these fixed ef-
fects. The estimated model coefficients on temperature terms
can thus be interpreted as the causal effect of temperature on
changes in incumbent vote share [4, 41, 39, 42].

I adjust for within-constituency and within-year correlation
in εit by employing heteroskedasticity-robust standard errors
clustered on both constituency and year [43] (the results are
also robust to accounting for spatial and serial dependence
[44, 45], see SI: Spatial and Serial Correlation). I exclude
non-climatic control variables from Equation 1 because of their
potential to generate bias – a phenomenon known as a ‘bad
control’ [4, 42] – in the parameters of interest. Because of
heterogeneous constituency sizes, I weight the regression in
Equation 1 by the number of votes cast in each constituency
election. Finally, I omit the 16◦C-21◦C (60-70◦F) temper-
ature indicator variable when estimating Equation 1. This
range contains as its midpoint the average temperature asso-
ciated with optimal well-being (65◦F) [46]. I thus interpret
the parameter estimates of f(tempit) as the change in incum-
bent party vote share associated with a particular temperature
range relative to this baseline category.

The results of estimating Equation 1 for the effects of tem-
perature on changes to incumbent party vote share indicate
that after controlling for time, location, and country-specific
trends, annual temperatures above 21◦C (70◦F) significantly
reduce incumbents’ electoral performance (see Figure 1, panel
(b) and SI: Regression Tables for full estimation results). For

2



i
i

“climate˙voting” — 2016/3/12 — 17:23 — page 3 — #3 i
i

i
i

i
i

Non-Agricultural

-40

-30

-20

-10

0

10

20

30

40

50

-5 0 5 10 15 20 25
Annual Temp. in ℃

Es
tim

at
ed

 Δ
 In

cu
m

be
nt

 V
ot

e 
Sh

ar
e

(P
er

ce
nt

ag
e 

Po
in

ts
)

a
Agricultural

-40

-30

-20

-10

0

10

20

30

40

50

-5 0 5 10 15 20 25
Annual Temp. in ℃

Es
tim

at
ed

 Δ
 In

cu
m

be
nt

 V
ot

e 
Sh

ar
e

(P
er

ce
nt

ag
e 

Po
in

ts
)

a

Fig. 3. Increases in temperature produce declines in incum-
bent vote share in both non-agricultural and agricultural con-
stituencies. Panel (a) plots the predicted changes in incum-
bent party vote share associated with estimating Equation
1 on the sample of constituencies with below-median per-
centage of remote-sensed agricultural croplands and panel
(b) plots this relationship for constituencies with above-
median percentages of crop cover. As temperatures in-
crease across both, changes in incumbent vote share de-
crease. Past 21◦C, changes in incumbent vote share decline
for both, though these declines in non-agricultural con-
stituencies fail to gain significance at standard thresholds.
Shaded error bounds represent 95% confidence intervals.

example, annual temperatures in the range of 21◦C-26◦C re-
duce incumbent vote share by over nine percentage points rel-
ative to the 16◦C-21◦C baseline (coefficient: −9.024, p: 0.003,
n: 4,880) while constituency annual temperatures above 26◦C
reduce incumbent vote share by over sixteen percentage points
(coefficient: −16.100, p<0.001, n: 4,880) (of note, these results
remain highly significant even after Bonferroni correction for
each temperature bin included in the regression [47], see SI:
Bonferroni Correction).

A 5◦C increase in temperature – the average increase pre-
dicted under the RCP8.5 scenario for 2099 as compared to
2010 – that produced a reduction in incumbent vote share of
over nine percentage points could be politically substantial.
Examining the constituencies in the 16◦C-21◦C temperature
range indicates that 31% of historical elections had parties that
won by less than this nine point margin. In two party con-
stituencies in this range – where electoral swings are mechan-
ically equal to twice the reduction in incumbent vote share –
41% of historical elections would have been altered by a nine
percentage point reduction in the winning party vote share.
Thus, the effects of hotter annual temperatures on changes in
vote share are of a magnitude that is highly politically mean-
ingful and would have resulted in substantial alterations to
the historical democratic process if applied to past electoral
returns (see SI: Frequency of Close Elections).

Income and Agriculture
The above estimates represent the average effect of tempera-

tures on changes to incumbent party vote share across all con-
stituencies in the sample. However, democratic constituencies
may vary in their response to increasing temperatures. For ex-
ample, politicians and voters in rich countries may be better
able to respond and adapt to the social stressors associated
with hotter temperatures, while politicians and voters in poor
countries may lack the resources needed to smooth temper-
ature shocks and thus experience more notable decreases in
well-being [28, 4]. Moreover, not all voters in rich or poor
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Fig. 4. Rich country non-agricultural and poor country agri-
cultural constituencies show large electoral effects of tempera-
tures. Panel (a) plots the predicted changes in incumbent
party vote share associated with estimating Equation 1
on the sample of rich country constituencies with below-
median percentage of remote-sensed agricultural croplands
and panel (b) plots this relationship for poor country con-
stituencies with above-median percentages of crop cover.
Vote share in rich non-agricultural areas displays a sig-
nificant reduction in incumbent vote share in response to
increases in annual temperature above 21◦C, though this
result is only significant at the p<0.10 level. Poor coun-
try agricultural constituencies also exhibit marked alter-
ations in vote share in response to shifts in temperatures,
significant at standard thresholds. Shaded error bounds
represent 95% confidence intervals.

countries are likely to be equally affected by the costs of ex-
posure to hotter temperatures. For example, voters in agri-
cultural areas may experience more direct and costly effects of
hotter annual temperatures than do voters in areas less reliant
on agriculture for their overall well-being [4, 48]. This leads to
the second question, do the effects of hotter temperatures vary
by level of economic development or by density of agriculture?

To examine whether richer or poorer countries’ voters are
more sensitive to amplifications in temperature, I stratify the
sample by median country-level incomes (measured in per-
capita purchasing power parity units) and estimate Equation
1 for both rich and poor country subsamples [41, 4]. Fig-
ure 2, panel (a), shows that the effect of annual temperatures
greater than 21◦C on changes to incumbent party vote share
in rich country constituencies is negative, though this effect
is significant only at the p<0.10 level (coefficient: −13.677,
p: 0.084, n: 3,933). Panel (b) of figure 2 shows that the
effect of annual temperatures greater than 26◦C on changes
to incumbent party vote share in poor country constituencies
is also negative and is highly statistically significant (coeffi-
cient: −15.162, p: 0.004, n: 947). Thus both in richer and
poorer countries I find evidence indicating declines in incum-
bent party vote share due to an increase in temperature above
21◦C, suggesting that higher incomes may not substantially
mute the impact of warming on electoral outcomes (see SI:
Rich and Poor). This is consistent with the observation that
increasing temperatures reduce economic well-being in both
rich and poor nations [4, 27, 28].

Using data on remote-sensed crop-cover [49] to split con-
stituencies along the median of percent of croplands, I re-
peat the above procedure to examine whether agricultural
constituencies demonstrate differential electoral responses to
increasing temperatures as compared to non-agricultural con-
stituencies (see SI: Agricultural and Non-Agricultural). Fig-
ure 3, panel (a), shows that the effect of annual temperatures

3
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Fig. 5. Climate change may speed democratic turnover via
reductions in incumbent vote share. Panel (a) depicts the dis-
tributions of annual temperature calculated from 21 down-
scaled climate models for the constituencies in the sample
in 2010, 2050, and 2099. Annual temperatures increase in
both magnitude and variation by 2050 and 2099 as com-
pared to 2010. Panel (b) depicts the constituency-level
forecasts for the impact of climate change on alterations in
incumbent vote share in the future. To incorporate down-
scaled climate model uncertainty, I calculate an estimated
change for an ensemble of 21 climatic models for each of
the 1,256 constituencies, producing 26,376 estimates for
both 2050 and 2099. I take the constituency average of
these estimates, plotting the change between 2010 and
2050 with green lines and the predicted change between
2050 and 2099 with purple lines. The black vertical lines
indicate the 2.5th to 97.5th percentile range across the
average constituency estimates. As can be seen, currently
hotter constituencies are predicted to experience markedly
steeper negative changes to incumbent party vote share.

greater than 26◦C on changes to incumbent party vote share in
non-agricultural constituencies is markedly negative, though
this effect is estimated with higher variance and fails to gain
significance at standard thresholds (coefficient: −18.175, p:
0.130, n: 2,281). Panel (b) of figure 3 shows that this effect in
agricultural constituencies is also negative and is statistically
significant (coefficient: −14.847, p: 0.010, n: 2,271). Thus
both agricultural and non-agricultural constituencies’ coeffi-
cient estimates suggest a decline in incumbent party vote share
due to an increase in temperature above 21◦C. These findings
are consistent with the observation that increasing tempera-
tures reduce both agricultural and non-agricultural economic
growth [4].

Combining these insights, I split the sample along rich and
poor countries’ agricultural and non-agricultural constituen-
cies and estimate Equation 1 in each sub-sample (see SI: In-
come and Agriculture). Figure 3, panel (a), shows that the
effect of annual temperatures greater than 21◦C on changes
to incumbent party vote share in rich country non-agricultural
constituencies is negative, though this effect is significant only
at the p<0.10 level (coefficient: −20.604, p: 0.053, n: 2,006).
Panel (b) of figure 3 shows that this effect in poor country
agricultural constituencies is also negative and is highly sta-
tistically significant (coefficient: −11.760, p<0.001, n: 344).
The regression models suggest the decline in incumbent party
vote share due to an increase in temperature above 21◦C is
thus driven primarily by non-agricultural constituencies in rich
nations and by agricultural constituencies in poor nations.
These results may implicate differential causal political mech-
anisms underlying the relationship between temperature and

vote shares in rich versus poor nations and suggest an impor-
tant area for future research.

Constituency Forecast
The historical data indicate that past temperatures have

likely altered historical electoral outcomes in meaningful ways.
Further, climate change is likely to produce positive shifts in
annual temperature distributions in the future [50] (see Fig-
ure 5, panel (a)). Positive shifts in annual temperatures above
21◦C may acutely reduce incumbent party vote share in the
future, increasing the rate at which incumbent democratic par-
ties and their politicians lose office. These facts lead to the
third question: might climate change alter constituency-level
vote share in the future?

To examine this question, I calculate projected average an-
nual temperatures for 2050 and 2099 from NASA Earth Ex-
change’s (NEX) bias-corrected, statistically downscaled tem-
perature forecasts drawn from 21 of the CMIP-5 ensemble
models run on the RCP8.5 emissions scenario (see SI: Climate
Model Data). I couple these predicted temperatures with the
historical estimate of the relationship between annual temper-
atures and changes in incumbent party vote share – employing
a spline regression model that closely matches the results from
Equation 1 – to calculate a forecast of possible alterations in
future vote share due to climate change for each constituency
across each downscaled climate model (see SI: Constituency-
Level Forecast).

I define the constituency-level forecast of the predicted
change in incumbent party vote share due to climate change
by 2050 (Vi2050) as:

Vi2050 = ∆̂Y ki2050 − ∆̂Y ki2010 [2]

and for the change from 2010 to 2099 (Vi2099) as:

Vi2099 = ∆̂Y ki2099 − ∆̂Y ki2010 [3]

Where k indexes the 21 specific climate models and i indexes

the constituencies. Further, ∆̂Y ki represents the fitted values
derived from the a spline fit of the downscaled climate model
data using the functional form from the estimated parameters
of Equation 1 for 2050 and 2099 (see SI: Main Forecast Model).
Of note, the results remain similar under the use of the fitted
values from Equation 1 directly (see SI: Alternative Forecast
Model). Using a full ensemble of climate models allows for
incorporating uncertainty regarding the underlying climatic
forecasts into the change in incumbent vote share predictions
[39, 41].

Figure 5 panel (b) plots the forecast results. Each of the
1,256 constituencies in the sample has a mean prediction
across all of the 21 downscaled climate models. The first
quartile predicted reduction in incumbent vote share by 2099
is -5.8 percentage points while the median reduction is -1.9.
Constituencies with higher historical annual temperatures ex-
perience the largest predicted future declines in incumbent
vote share while cooler constituencies may experience more
mild declines to even slight increases in vote share. However,
the predicted negative impacts of climate change are over thir-
teen times greater in magnitude than are the positive impacts
(the maximum mean prediction by 2099 among sample con-
stituencies is 0.95 percentage points while the minimum mean
prediction is -12.43 percentage points).

Country Forecast
Some nations are hotter than others on average. This fact,

coupled with the observation that the effects of temperature

4
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Fig. 6. Climate change may increase the frequency of democratic turnover most in warmer, poorer nations. This figure
depicts the country-level averages across the 26,376 constituency-level climate model forecasts for the impact of climate
change on alterations to future incumbent vote share by 2050 and 2099. As can be seen, countries with constituencies
that experience presently hotter annual temperatures – countries that include many of the poorest countries in the
sample – are likely to experience the greatest climate-induced increase in democratic turnover. To incorporate both
downscaled climate model uncertainty and intra-country variance, I present the 2.5th to 97.5th percentile range of the
21 climate models across each country’s set of constituencies via the black vertical lines. Countries with greater intra-
country variance in historical annual temperatures, like the United States, have a larger range of future constituency-level
predictions.

on changes to incumbent vote share are non-linear, with most
acute effects observed at higher temperatures, leads to the
fourth question: which countries may see the highest future
increases in warming-induced democratic turnover?

Figure 6 plots country-level forecast results for 2050 and
2099, respectively. Bars for each country represent the aver-
age prediction across all of the 21 climate models across each
of the constituencies within that country (see SI: Country-
Level Forecast). Countries that have higher spatial variation
in annual temperatures – such as the United States and Ar-
gentina – have a higher range of underlying constituency fore-
casts. Importantly, countries with higher average historical
temperatures – such as Zambia, Brazil, and Colombia – may
experience the most significant future reductions in incumbent
vote share.

Discussion
Voting is central to modern politics. It provides the primary
means of democratic participation, shapes politicians’ incen-
tives, and regulates the nature of policies. The available evi-
dence indicates that climate change may alter voting patterns
in the future, increasing incumbent electoral losses and speed-
ing rates of democratic turnover.

There are several considerations important to the interpre-
tation of these results. First, while I have data from over
a billion votes cast across more than a thousand constituen-
cies, optimal data would also include countries not within the
present sample. Of special import would be countries with
high average annual temperatures, like those in Sub-Saharan
Africa. The lack of available spatial data on such countries’

historical electoral boundaries limits the current sample. Sec-
ond, because I spatially average temperature and precipitation
values to the constituency-level, measurement error may exist
between average climatic conditions and those that voters ac-
tually experienced, possibly attenuating the estimated mag-
nitude of the effects [51]. Third, these estimates are based
exclusively on annual temperature and precipitation. Because
climate change is likely to increase extreme weather events like
tornadoes [52], and because such events can also reduce incum-
bent vote share [16], these results may underestimate the full
impact of climate change on future democratic turnover. Fi-
nally, it is possible that voters may adapt to altered future cli-
mates with political behaviors not seen in the historical data.

Ultimately, turnover – when directly related to politician
performance – is vital to well-functioning democracy [53].
However, the empirical results I present here indicate that
democratic turnover might increase as a result of climatic
events outside the control of individual politicians. This ex-
ogenously driven political turnover may shorten democratic
time horizons, inducing parties and their politicians to focus
on short-run policies at the expense of important longer-run
strategies [54]. This pattern may have a particularly deleteri-
ous impact on climate mitigation, as its long-run benefits are
unlikely to be observed from one election to the next. More-
over, the uncertainty induced by increasing rates of democratic
turnover can directly upset macroeconomic outcomes [55, 56].
Even more starkly, turnover in nations with weak democratic
institutions can upend political stability. If incumbents in
weak democracies foresee a greater risk of losing office, they
sometimes employ electoral fraud and pre-electoral violence
to maintain power [57, 58]. If these methods fail, incumbents’
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loss occasionally precipitates post-electoral violence that can
in turn induce broader civil conflict [59, 60]. These insights,
when coupled with the empirical findings above, suggest cli-
mate change may alter the nature of democratic politics in
costly ways in the future.
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Map of Constituency Boundaries

Figure S1: Plot of Constituency Boundaries. The constituencies included in the analysis have broad coverage
across 19 countries, with unbalanced temporal coverage from 1925-2011.

Figure S1 displays the constituency boundaries included in the analysis.

Data Description

Political Variables

I obtain constituency level electoral data from the Constituency Level Electoral Archive (CLEA). This is the
most comprehensive global archive of constituency level historical electoral returns for countries’ national
lower house. For each constituency within each country, the archive lists the month and year in which that
election occurred. It also lists, for each party, the basis of the primary dependent variable: the party share of
the constituency vote total. The dataset can be obtained here and the codebook can be obtained here.

In order to map climatic data onto political variables, one needs a broad set of spatial electoral district
boundaries. Until recently this was unavailable. A new product, the Geo-Referenced Electoral Database
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(GRED) has been released by the same researchers that produce CLEA. The GRED data represent – by far –
the most comprehensive publicly accessible database of constituency spatial boundaries.

The GRED data contain a cross-sectional snapshot of constituency level electoral boundaries for a given
country-year. Unfortunately, electoral boundaries change over time. Thus for any given country, the
boundaries in GRED may be valid for only one election, for only a few elections, or, in some cases, for all of
a country’s elections. To determine which boundaries were valid for which country-years, I consulted the
constituency boundary history for each country in the GRED data, keeping only those elections from CLEA
for which the GRED boundaries are valid. The GRED data can be accessed here.

CLEA data provides the share of the constituency vote total for each party running in a country’s lower-house
national legislative elections. The main dependent variable is the change in constituency vote share (from
t − 1) in election t of the party that won the majority of that constituency’s vote in election t − 1. This
approach is consistent with previous literature that incorporates data from multiple electoral systems1.
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Figure S2: Density plot of changes to major incumbent party constituency vote share and level of incumbent
party vote share. Dashed lines represent medians of the respective distributions.

Most elections in the data are relatively competitive (the median major incumbent party vote share across
constituencies is 46%). This can be seen in Figure S2, panel (b). The median change in incumbent party
vote share is -4 percentage points.

Election Years, Constituencies, and Votes

Because of the nature of electoral boundaries that regularly change in some countries and remain relatively
fixed in others, the electoral boundary data enables use of longer periods of elections for some countries and
shorter periods for others. Of additional note, because a year of data must be used in order to calculate
constituency-level incumbents from the first period, I lose the first year of each new electoral boundary to
calculating the dependent variable. Table S1 displays the number of years that each country enters the
sample.

Further, constituencies vary in geographic size across countries. Some countries, like the United States, use
smaller districts for their lower house elections than do other countries, like Brazil, who use larger geographic
units. Table S1 also displays the number of unique constituencies that enter the sample for each country.
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Table S1: Sample Details

Country Years Constituencies Obs. Total Votes
Canada 3 308 739 3.441e+07
Colombia 3 33 83 2.413e+07
Costa Rica 14 7 98 1.437e+07
Finland 13 15 166 3.073e+07
Germany 5 16 56 1.743e+08
Argentina 9 24 110 8.213e+07
Guyana 5 10 30 587520
Honduras 6 18 108 2.572e+07
Iceland 10 8 88 1.351e+06
Austria 5 43 173 1.924e+07

Luxembourg 17 4 53 3.304e+07
Norway 15 19 285 3.368e+07
Portugal 12 20 197 5.42e+07
Romania 3 41 62 1.695e+07
Spain 10 52 465 1.984e+08

Switzerland 3 26 66 5.275e+06
Brazil 5 27 128 3.6e+08

United States 5 435 1645 3.878e+08
Zambia 3 150 328 3.877e+06

Temperature and Precipitation
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Figure S3: Density plots of annual temperature and precipitation variables.

CRU Meteorological Data

I employ the gridded global temperature and precipitation data produced by the Climatic Research Unit
(CRU)2. This is one of the most frequently utilized datasets in the economic and social analysis of the impacts
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Figure S4: Plots of average temperature and sumtotal precipitation by year.

of the climate on social phenomena3. These data are on a 0.5x0.5 grid and are monthly from 1901 to 2013. I
obtained the precipitation data from here and the temperature data from here. Using the raster package in
R and employing the San Diego Supercomputer Center’s Gordon supercomputer, I spatially averaged the
grid cells to constituency boundaries for each historical month.

Annual Temperature

I calculate the year prior to election temperature variable as:

Temp.jt = 12 Months Prior to Election Temp.jt

where j is constituency and t is election year. Temperature is measured in ◦C. Using yearly mean temperature
is consistent with the literature on the effects of climate on aggregate economic output4–6. The distribution
of these anomalies can be seen in Figure S3, panel (a) while temperature over time can be seen in Figure S4,
panel (a).

Annual Precipitation

To calculate the annual sumtotal precipitation variable, I calculate the 12 months preceding an election’s
total precipitation:

Sumtotal Precip.jt = Σ12 Months Prior to Election Prcp.jt

where again j is constituency and t is election year.

Precipitation is measured in cm. The distribution of precipitation can be seen in Figure S3, panel (b) while
annual precipitation over time can be seen in Figure S4, panel (b).
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Climate Model Data

NASA NEX Bias-Corrected Spatially Downscaled Climate Forecast Data

For the forecast, I employ bias-corrected spatially downscaled (BCSD) climate forecast data from 21 global
circulation model temperature and precipitation outputs in the CMIP5 model comparison project7, using the
RCP 8.5 emissions scenario8. These datasets consisted of daily level 0.25x0.25 grid cells for total precipitation
and maximum and minimum temperatures (which were averaged to create the average temperature forecasts).
The years span 2010-2099, though because of the size of these data, I select the years 2010, 2050, and 2099
for analysis. Again using the raster package in R and employing the San Diego Supercomputer Center’s
Gordon supercomputer, I spatially averaged the NEX BCSD grid cells to constituency boundaries. The NEX
BCSD data can be obtained from here.

Regression Tables

Main Effect

In this section I present the regression table associated with the regression from Equation 1 in the main text.
The unit of analysis is the constituency-year, with analysis weighted by the number of votes cast in each
constituency-election. The dependent variable throughout is the change in the vote share of the party that
won the highest number of votes in the last constituency election – the constituency incumbent party1. The
main independent variable is annual average temperature in the twelve months prior to the election. The
main model results are presented in model (1) of Tables S2.

Model (2) includes a squared precipitation term to check for a non-linear relationship, Model (3) includes
controls for the month prior to election temperature and precipitation, Model (4) includes squared month
prior meteorological variables to check for non-linear relationships, and Model (5) excludes all these controls,
including only temperature. As can be seen, the results on the annual temperature bins remain consistent
with the removal/inclusion of these controls. Because of the potential for precipitation to serve as an omitted
variable – biasing coefficient estimates – I report the estimates of model (1) in the main text.

Time and Location Controls

The main specification employs constituency, year, election month, and country-specific year indicators to
partial out the potentially confounding effects of location, time, and country-specific trends on the estimated
annual temperature coefficients6. However, the results are robust to altering these specifications9. Table S3
presents the results of alternative specifications (with model (6) replicating the model from Equation 1 in
the main text). The results are consistent across controlling for only constituency fixed effects (model (2)),
controlling for only constituency and year fixed effects without election month or flexible country trends
(model (3)), the exlusion of country-specific trends (model (4)), the replacement of country-specific year
trends with continent-specific year trends (model (5)), and to controlling for all constituency, year, election
month, and country-specific potentially unobserved, constant confounds (model (6)), same as main text
Equation 1). Because the latter specification is most conservative, I select it as the main model as given by
Equation 1 in the main text.

Bonferroni Correction

In this section I present the regression table associated with the regression from Equation 1 in the main text,
calculating Bonferroni corrections for the p-values on the eight meteorological coefficients in the model. This
is a conservative procedure for dealing with the potentially inflated family-wise error rate associated with
multiple hypothesis testing for each coefficient on each bin in this non-linear specification10,11. Nonetheless,

6
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Table S2: Annual Temperature, Precipitation, and Change in Incumbent Vote Share

DV: Change in Incumbent Party Vote Share
(1) (2) (3) (4) (5)

AnnualT ∈ (−∞,−4] 9.212 9.334 8.572 8.610 9.100
(7.352) (7.274) (7.139) (7.761) (7.314)

AnnualT ∈ (−4, 1] 2.686 2.747 2.446 2.207 2.601
(4.013) (3.999) (4.085) (4.310) (4.012)

AnnualT ∈ (1, 6] 2.164 2.262 1.992 1.691 2.108
(3.304) (3.276) (3.467) (3.584) (3.303)

AnnualT ∈ (6, 11] −0.179 −0.072 −0.367 −0.561 −0.224
(1.915) (1.867) (1.987) (2.072) (1.917)

AnnualT ∈ (11, 16] −1.783 −1.712 −1.863 −1.888 −1.803
(1.538) (1.543) (1.671) (1.724) (1.528)

AnnualT ∈ (21, 26] −9.024∗∗∗ −8.993∗∗∗ −8.906∗∗∗ −8.858∗∗∗ −8.897∗∗∗

(2.999) (2.978) (2.985) (2.991) (3.005)
AnnualT ∈ (26,∞] −16.100∗∗∗ −16.558∗∗∗ −16.105∗∗∗ −15.943∗∗∗ −15.803∗∗∗

(4.569) (4.760) (4.669) (4.756) (4.465)
Annual Precip. −0.008 −0.038 −0.015 −0.015

(0.014) (0.033) (0.015) (0.016)
Annual Precip.2 0.0001

(0.0001)
Month Temp. −0.531 −0.240

(0.488) (0.386)
Month Precip. −0.012

(0.013)
Month Temp.2 0.072 0.073

(0.075) (0.108)
Month Precip.2 −0.0001

(0.001)
Constituency FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Election Month FE Yes Yes Yes Yes Yes
Country:Year FE Yes Yes Yes Yes Yes
Observations 4,880 4,880 4,880 4,880 4,880
R2 0.453 0.453 0.454 0.454 0.453
Adjusted R2 0.215 0.215 0.216 0.216 0.215
Residual Std. Error 6,106.697 6,105.695 6,102.489 6,102.820 6,106.203

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Standard errors are in parentheses and are clustered on constituency and year
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Table S3: Alternative Time and Location Fixed Effects
DV: Change in Incumbent Party Vote Share

(1) (2) (3) (4) (5) (6)
AnnualT ∈ (−∞,−4] 2.335 12.445∗∗ 8.279 8.052 11.346 9.212

(5.829) (7.751) (7.450) (7.132) (7.352)
AnnualT ∈ (−4, 1] 2.903∗∗ 10.709∗∗ 3.106 3.046 4.845 2.686

(1.365) (5.452) (5.266) (4.751) (3.870) (4.013)
AnnualT ∈ (1, 6] 1.036 7.929∗ 3.006 3.140 3.482 2.164

(1.124) (4.083) (4.124) (3.732) (3.336) (3.304)
AnnualT ∈ (6, 11] −0.593 3.085 1.294 0.946 0.471 −0.179

(1.435) (3.704) (3.116) (2.581) (2.333) (1.915)
AnnualT ∈ (11, 16] −1.630 −0.735 −0.581 −0.843 −1.148 −1.783

(1.021) (2.172) (2.646) (2.215) (1.924) (1.538)
AnnualT ∈ (21, 26] −0.583 −10.405∗∗∗ −9.464∗∗∗ −9.336∗∗∗ −8.560∗∗∗ −9.024∗∗∗

(1.178) (2.988) (2.931) (3.022) (2.967) (2.999)
AnnualT ∈ (26,∞] −3.397∗∗∗ −15.212∗∗∗ −14.782∗∗∗ −14.500∗∗∗ −15.281∗∗∗ −16.100∗∗∗

(1.265) (4.562) (4.575) (4.879) (4.769) (4.569)
Annual Precip. −0.005 0.001 −0.007 0.003 0.002 −0.008

(0.008) (0.013) (0.011) (0.011) (0.014) (0.014)
Constant −3.710∗∗∗

(1.153)
Constituency FE No Yes Yes Yes Yes Yes
Year FE No No Yes Yes Yes Yes
Election Month FE No No No Yes Yes Yes
Continent:Year FE No No No No Yes No
Country:Year FE No No No No No Yes
Observations 4,880 4,880 4,880 4,880 4,880 4,880
R2 0.007 0.315 0.410 0.424 0.444 0.453
Adjusted R2 0.005 0.076 0.191 0.207 0.212 0.215
Residual Std. Error 6,874.297 6,625.284 6,199.136 6,136.871 6,118.891 6,106.697

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Standard errors are in parentheses and are clustered on constituency and year
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after Bonferroni correction, temperatures above the AnnualT ∈ (16, 21] bin still retain significance at
p$<$0.05. Tables S4 presents this regression. Of note, the p-value on the AnnualT ∈ (21, 26] coefficient after
Bonferroni correction is 0.021 and is 0.003 for the AnnualT ∈ (26,∞] coefficient.

Table S4: Bonferroni Corrected p-Values for Main Specification

DV: Change in Incumbent Party Vote Share
AnnualT ∈ (−∞,−4] 9.212

(7.352)
AnnualT ∈ (−4, 1] 2.686

(4.013)
AnnualT ∈ (1, 6] 2.164

(3.304)
AnnualT ∈ (6, 11] −0.179

(1.915)
AnnualT ∈ (11, 16] −1.783

(1.538)
AnnualT ∈ (21, 26] −9.024∗∗

(2.999)
AnnualT ∈ (26,∞] −16.100∗∗∗

(4.569)
Annual Precip. −0.008

(0.014)
Constituency FE Yes
Year FE Yes
Election Month FE Yes
Country:Year FE Yes
Observations 4,880
R2 0.453
Adjusted R2 0.215
Residual Std. Error 6,106.697

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Standard errors are in parentheses and are clustered on constituency and year

Linear and Polynomial Specifications

The main specification employs temperature bins to flexibly estimate the non-linear relationship between
temperature and changes in incumbent party vote share. Table S5 presents the results of alternative specifi-
cations of temperature, with temperature entering linearly (model (1)) and then entering with progressively
higher order polynomials (models (2-4)). Fourth order polynomials (model (4)) gain marginal significance,
as their functional form most closely approximates the functional form of Figure 1, panel (a) in the main
text. However, because of the imposition of parametric functional form and the relative complexity of
interpreting the marginal effects and standard errors associated with fourth order polynomials, I prefer the
flexible non-linear estimation provided by Equation 1 in the main text3,12.

Spatial and Serial Correlation

In the main text results, I report standard errors that allow for within-constituency and within-year correlations
in the error term13–15. The use of standard errors clustered in this manner is common in the existing literature
that examines the potential for climate change to alter social outcomes6,16,17. However, temperature and,
to a lesser extent, precipitation are often spatially correlated. Thus, it is important to check to see if the
inferential results are substantially affected by accounting for possible temporal and spatial correlation of the
errors3.

To flexibly account for both spatial dependence and serial dependence within constituencies, I implement
nonparametric estimation of the variance-covariance matrices, producing heteroskedasticity, serial correlation,

9



Table S5: Linear and Polynomial Specifications

DV: Change in Incumbent Party Vote Share
(1) (2) (3) (4)

Annual Temp. −1.072 0.385 −3.840 −2.364
(0.852) (2.862) (2.624) (1.804)

Annual Precip. −0.007 −0.010 −0.014∗ −0.017∗∗

(0.007) (0.006) (0.008) (0.008)
Annual Temp.2 −0.056 0.314 −0.161

(0.109) (0.215) (0.169)
Annual Temp.3 −0.009 0.025∗

(0.007) (0.015)
Annual Temp.4 −0.001∗

(0.0004)
Constituency FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Election Month FE Yes Yes Yes Yes
Country:Year FE Yes Yes Yes Yes
Observations 4,880 4,880 4,880 4,880
R2 0.450 0.450 0.451 0.452
Adjusted R2 0.211 0.212 0.213 0.214
Residual Std. Error 6,120.332 6,120.031 6,115.173 6,109.540

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Standard errors are in parentheses and are clustered on constituency and year

Table S6: Conley Spatial Standard Errors

DV: Change in Incumbent Party Vote Share
Multiway SE Conley SE

(1) (2)
AnnualT ∈ (−∞,−4] 8.279 8.279

(7.751) (6.444)
AnnualT ∈ (−4, 1] 3.106 3.106

(5.266) (4.302)
AnnualT ∈ (1, 6] 3.006 3.006

(4.124) (3.234)
AnnualT ∈ (6, 11] 1.294 1.294

(3.116) (2.982)
AnnualT ∈ (11, 16] −0.581 −0.581

(2.646) (1.923)
AnnualT ∈ (21, 26] −9.464∗∗∗ −9.464∗∗∗

(2.931) (3.067)
AnnualT ∈ (26,∞] −14.782∗∗∗ −14.782∗∗∗

(4.575) (4.686)
Annual Precip. −0.007 −0.007

(0.011) (0.018)
Constituency FE Yes Yes
Year FE Yes Yes
Observations 4,880 4,880
R2 0.410 0.410
Adjusted R2 0.191 0.191
Residual Std. Error 6,199.136 6,199.136

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Spatial HAC Conley standard errors use 1,000km bandwidth.

Standard errors in model (1) are clustered on constituency and year.
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and spatial correlation robust (Conley) standard errors18–20.1 This method allows for contemporaneous
spatial correlations between constituencies whose centroids fall within a wide limiting proximity (1,000
kilometers) to one another. Of note, the Conley code allows for only two sets of fixed effects, so in the
examinations of spatial dependence I include constituency and year fixed effects only, excluding election
month and country-specific year fixed effects.

The results of calculating the standard errors for the main text regression in this manner – using a 1,000km
constituency centroid-to-centroid cutoff and allowing for full serial correlation – are presented in Table S6.
As can be seen, the Conley standard errors are only slightly larger than the standard errors clustered on
constituency and year, and resultant p-values are still highly significant on temperature bins greater than
21◦C. Of important note, the median distance from a constituency’s centroid to the nearest centroid of its
neighboring constituency is 55 kilometers. Over 99% of constituencies’ centroids fall within 1,000km of the
centroid of their nearest neighbor.

Rich and Poor

In this section I present the regression tables associated with the regression from the main text that splits
Equation 1 by rich versus poor countries (countries above or below the global average per-capita income
in 1980, similar to how Burke et. al (2015) conduct their split using median income in 19806). ‘Rich’
countries in this split are: Canada, Finland, Germany, Iceland, Austria, Luxembourg, Norway, Portugal,
Spain, Switzerland, and the United States. ‘Poor’ countries in this split are: Colombia, Costa Rica, Argentina,
Guyana, Honduras, Romania, Brazil, and Zambia. As can be seen, the sample of elections from rich countries
is over four times as large as that from poor countries. Table S7 presents the results of these regressions.
Though the sample size is smaller for poor countries, the effects of hot temperatures across constituencies in
these nations still gain significance at standard levels. The coefficients on the temperature bin above 21◦C in
rich countries is negative but gains significance only at the p < 0.10 level.

Agricultural and Non-Agricultural

In this section I present the regression tables associated with the regression from the main text that splits
Equation 1 by agricultural versus non-agricultural constituencies (constituencies above or below the median
of percentage of average remote-sensed croplands21). Table S8 displays the number of unique constituencies
that are classified as either agricultural or non-agricultural for each country in the sample, excluding Zambia.
Remote sensing technologies perform poorly at acurately classifying agricultural lands in Sub-Saharan Africa22,
and thus I omit Zambia from the main agricultural analysis.

Table S8: Number of Ag. and Non-Ag. Constituencies by Country

Country Ag. Constituencies Non-Ag. Constituencies
Argentina 6 18
Austria 22 21
Brazil 8 19
Canada 147 161
Colombia 15 18
Costa Rica 6 1
Finland 1 14
Germany 15 1
Guyana 2 8
Honduras 13 5
Portugal 14 6

1I thank Darin Christensen and Thiemo Fetzer for providing the basic R code – in turn derived from Solomon Hsiang’s
code20 – that I modified to calculate Conley errors.
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Country Ag. Constituencies Non-Ag. Constituencies
Spain 44 8

Switzerland 18 8
United States 213 222

Table S9 presents the results of regressions that split the sample by agricultural versus non-agricultural
constituencies. Of note, as can be seen in models (3) and (4) that include Zambia, the results are not
particularly sensitive to the inclusion or exclusion of Zambian elections, even though agriculture is measured
with high-error in the country. Because of the relatively low level of agricultural intensification in Zambia21,
all of its constituencies are classified as non-agricultural (due to mismeasurement mentioned above). Hot
temperatures in agricultural constituencies produce significantly more negative changes in incumbent party
vote share. Hot temperatures in non-agricultural constituencies are also associated with reduced vote share,
though these effects do not gain significance.

Income and Agriculture

In this section I present the tables associated with the regression from the main text that splits Equation 1
by non-agricultural constituencies from rich countries versus agricultural constituencies from poor countries.
I also investigate the differential effects between rich country agricultural constituencies and poor country
non-agricultural constituencies. Table S10 displays the number of unique constituencies that are classified as
either poor agricultural, rich agricultural, poor non-agricultural, or rich non-agricultural for each country in
the sample.

Table S10: Ag./Non-Ag. Constituencies by Rich and Poor Countries

Country Rich Ag. Poor Ag. Rich Non-Ag. Poor Non-Ag.
Austria 22 0 0 0
Canada 147 0 0 0
Finland 1 0 0 0
Germany 15 0 0 0

Luxembourg 4 0 0 0
Portugal 14 0 0 0
Spain 44 0 0 0

Switzerland 18 0 0 0
United States 213 0 0 0
Argentina 0 6 0 0
Brazil 0 8 0 0

Colombia 0 15 0 0
Costa Rica 0 6 0 0
Guyana 0 2 0 0
Honduras 0 13 0 0
Romania 0 41 0 0
Austria 0 0 21 0
Canada 0 0 161 0
Finland 0 0 14 0
Germany 0 0 1 0
Iceland 0 0 8 0
Norway 0 0 19 0
Portugal 0 0 6 0
Spain 0 0 8 0

Switzerland 0 0 8 0
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Country Rich Ag. Poor Ag. Rich Non-Ag. Poor Non-Ag.
United States 0 0 222 0
Argentina 0 0 0 18
Brazil 0 0 0 19

Colombia 0 0 0 18
Costa Rica 0 0 0 1
Guyana 0 0 0 8
Honduras 0 0 0 5
Zambia 0 0 0 150

Table S11 presents the results of regressions that split the sample by rich country agricultural constituencies
versus poor country agricultural constituencies (models (1-2)) as well as by rich vs. poor country non-
agricultural constituencies (models (3-4)). Because of above mentioned issues with measurement of croplands
in Zambia, I exclude it from these analyses. As can be seen, agricultural constituencies in poor nations
exhibit the largest significant negative response to high temperature shocks. Of note, high temperatures in
non-agricultural constituencies in rich nations also produce negative changes in incumbent vote share, though
this effect is only significant at the p < 0.10 level.

Alternative Temperature Bins

In this section I vary the size of the temperature bins associated with model (1) of Tables S2, the main
specification, ensuring the reference category still contains 18.5◦C (65◦F). Bin sizes of 2◦C and 1◦C each
demonstrate reductions in vote with increasing annual temperatures. Splitting the bin sizes smaller than 5◦C
reduces the number of observations within each bin and increases associated standard errors. Because each
5◦C bin includes more constituencies in each bin from a variety of countries, I choose 5◦C bin sizes for the
main specification. These results can be seen in Figure S5

Frequency of Close Elections

To evaluate the size of the effect of estimated electoral swings, I use the full Constituency Level Electoral
Archive (CLEA) for each country in the main dataset, which provides a broader accounting of historical
elections than does the sample that is constrained by the availability of spatial electoral boundaries. The
CLEA dataset has 59,171 total constituency-election observations for the countries included in this analysis.

To see whether the magnitude of the marginal effect of temperature increases on vote share has the potential
to be politically meaningful, I examine the number of constituency-level elections with historical temperatures
between 16◦C and 21◦C whose returns were closer than the nine percentage point reduction in the change in
incumbent vote share associated with a shift between this baseline category of 16◦C-21◦C to the 21◦C-26◦C
range. Of important note, an incumbent’s loss of vote share means – mechanically – that challenging parties
will receive a boost of some fraction of the lost vote share in that constituency. In the case of constituencies
with only two main parties competing for power, a nine percentage point reduction in incumbent vote share
produces an eighteen percentage point swing in vote share. In the full historical electoral data 19% of all
constituencies have only two parties while 39% have either only two or only three parties.

Of constituency-level elections in constituencies with annual temperatures between 16◦C and 21◦C, 31% had
parties that won by nine percentage points or less, the marginal effect of moving from the 16◦C-21◦C baseline
bin to the 21◦C-26◦C bin, or the effect of a 5◦C average increase in annual temperature – approximately
the average increase projected by 2099 by climate models for these constituencies as compared to the 2010
baseline (more precisely, 4.5◦C under the RCP8.5 emissions scenario). In electoral contests with only two
parties, the effect of a nine percentage point reduction in vote share is amplified into an eighteen percentage
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Table S7: Regressions Splitting by Poor vs. Rich Countries

DV: Change in Incumbent Party Vote Share
Poor Countries Rich Countries

(1) (2)
AnnualT ∈ (−∞,−4] 8.668

(7.664)
AnnualT ∈ (−4, 1] 2.133

(4.003)
AnnualT ∈ (1, 6] −7.442 1.458

(17.238) (3.387)
AnnualT ∈ (6, 11] 25.776∗∗∗ −2.061

(8.767) (1.684)
AnnualT ∈ (11, 16] 10.875 −2.468∗

(7.112) (1.433)
AnnualT ∈ (21, 26] −7.841∗ −13.677∗

(4.058) (7.912)
AnnualT ∈ (26,∞] −15.162∗∗∗

(5.287)
Annual Precip. −0.018 0.010

(0.015) (0.026)
Constituency FE Yes Yes
Year FE Yes Yes
Election Month FE Yes Yes
Country:Year FE Yes Yes
Observations 947 3,933
R2 0.676 0.345
Adjusted R2 0.438 0.086
Residual Std. Error 6,627.654 6,021.438

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Standard errors are in parentheses and are clustered on constituency and year
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Figure S5: The purple line with green points in each panel plots the same relationship as seen in Figure 1,
panel (b) in the main text (which is replicated in panel (a) of this figure). In panel (b) bin size is reduced to
two degrees Celsius. In panel (c) bin size is reduced to one degree Celsius. As can be seen, there is close
correspondence between the functional forms in each, with changes in incumbent party vote share becoming
more negative with increases in temperature.
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Table S9: Regressions Splitting by Non-Ag. vs. Ag. Constituencies

DV: Change in Incumbent Party Vote Share
Non-Ag. Ag. Non-Ag, Zambia Ag., Zambia

(1) (2) (3) (4)
AnnualT ∈ (−∞,−4] 15.288 15.305

(11.053) (11.208)
AnnualT ∈ (−4, 1] 7.366 28.221∗∗ 7.384 28.221∗∗

(7.192) (14.173) (7.295) (14.173)
AnnualT ∈ (1, 6] 7.477 1.029 7.493 1.029

(6.794) (7.728) (6.892) (7.728)
AnnualT ∈ (6, 11] 4.540 −1.685 4.552 −1.685

(5.769) (2.107) (5.850) (2.107)
AnnualT ∈ (11, 16] 1.795 −2.680 1.795 −2.680

(2.486) (1.854) (2.519) (1.854)
AnnualT ∈ (21, 26] −9.947 −9.706∗∗∗ −9.412 −9.706∗∗∗

(8.494) (3.546) (8.439) (3.546)
AnnualT ∈ (26,∞] −18.175 −14.847∗∗∗ −17.646 −14.847∗∗∗

(11.982) (5.746) (12.081) (5.746)
Annual Precip. −0.028 0.007 −0.029 0.007

(0.038) (0.020) (0.038) (0.020)
Constituency FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Election Month FE Yes Yes Yes Yes
Country:Year FE Yes Yes Yes Yes
Observations 2,281 2,271 2,609 2,271
R2 0.387 0.512 0.401 0.512
Adjusted R2 0.103 0.270 0.099 0.270
Residual Std. Error 5,843.705 6,754.601 5,572.362 6,754.601

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Standard errors are in parentheses and are clustered on constituency and year

point electoral swing. In the historical data, 41% of two-party constituencies in this temperature range
were won by 18 percentage points or less. Ultimately, the sizable effects associated with increases in annual
temperature projected by 2099 have the potential to alter the outcomes of a large portion of future electoral
contests.

Forecast Details

Main Forecast Model

The primary specification from Equation 1 in the main text uses annual temperature bins to non-linearly
estimate the relationship between temperature and changes to constituency-level incumbent party vote
share (the results of estimating this equation can be seen in Tables S2). One option to conduct a forecast
with future climate model data would be to directly employ the estimated coefficients from model (6) of
Table S2 in the forecast. Doing so would have the conservative effect of assigning future temperature values
that fall outside of the support of the historical distribution to the maximum bin in the historical data.
However, employing this method would also have a number of drawbacks. First, the underlying historical
temperature distribution is not perfectly smooth, given the cross-country variations in temperature regimes.
Because bin-width in Equation 1 is 5◦, constituencies whose average temperature was just greater than 21◦C
(70◦F) would be assigned the coefficient associated with the 21-26◦C bin until future temperatures increased
beyond 26◦C. Thus, many constituencies might show zero effect of future climatic changes simply because
their full predicted warming this century might not push them into the next higher temperature bin. The
second drawback to this approach relates to the conservativeness associated with assigning future values
of temperature to the maximum historical temperature coefficient. One may reasonably expect that the
effects of temperature on human economic, psychological, and physiological well-being will not remain flat as
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Table S11: Regressions Splitting by Rich/Poor, Ag./Non.Ag

DV: Change in Incumbent Party Vote Share
Rich Ag. Poor Ag. Rich Non-Ag. Poor Non-Ag.

(1) (2) (3) (4)
AnnualT ∈ (−∞,−4] 14.967

(11.883)
AnnualT ∈ (−4, 1] 31.583∗∗ 7.016

(13.710) (7.854)
AnnualT ∈ (1, 6] 4.100 −8.436 7.155

(7.232) (20.040) (7.418)
AnnualT ∈ (6, 11] −3.289∗∗ 22.985∗∗∗ 4.255 7.172

(1.441) (7.171) (6.366) (8.583)
AnnualT ∈ (11, 16] −2.991∗ 2.517 1.561 5.358

(1.785) (4.983) (2.612) (4.573)
AnnualT ∈ (21, 26] 0.435 −11.760∗∗∗ −20.604∗ 4.428

(8.963) (3.453) (10.654) (6.676)
AnnualT ∈ (26,∞] −17.645∗∗∗ −3.936

(6.236) (12.618)
Annual Precip. 0.030 −0.012 −0.023 −0.044

(0.038) (0.020) (0.028) (0.136)
Constituency FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Election Month FE Yes Yes Yes Yes
Country:Year FE Yes Yes Yes Yes
Observations 1,927 344 2,006 268
R2 0.335 0.816 0.393 0.374
Adjusted R2 0.031 0.620 0.129 −0.392
Residual Std. Error 6,686.736 7,537.541 5,393.705 10,101.550

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Standard errors are in parentheses and are clustered on constituency and year

future temperatures exceed historical maximums. Thus using only binned coefficient values may be an overly
conservative approach.

To address these issues, I build a linear spline function that matches the functional form revealed by
connecting the midpoints of the historical temperature bins to one another. This has the advantage of
allowing constituencies to increase or decrease linearly between the midpoints from Equation 1. It also has
the added benefit of allowing for linear extrapolation of historical relationships to novel future temperatures,
and is thus likely to more accurately reflect human exposure to heightened temperatures. I fit the coefficient
on year prior sumtotal precipitation to future predicted precipitation data and include it in the fitted values
of the forecast. The spline function used is depicted by the red line in Figure S6.

Alternative Forecast Model

In this section I depict the results of employing the estimated coefficients from Equation 1 directly – coupled
with climate model predictions – to conduct the forecast. As can be seen in the replication of Figure 5 from
the main text, in Figure S7, the average constituency prediction is for a decrease of -1.71 percentage points in
incumbent party vote share. Because some constituencies do not completely shift from one temperature bin
to another, their change from 2010 to 2050 to 2099 is largely determined by changes in annual precipitation,
given by the negative linear slope on annual precipitation from Equation 1. Even with this forecasting
procedure, the average climate change induced reduction is negative as constituencies are pushed into higher
temperature regimes.

I replicate Figure 6 from the main text in Figure S8. The set of countries likely to see the greatest reductions
remains the same, though the error bars increase as a result of increased intra-country variance due to the
coarser bin function of Equation 1 as compared to the spline forecast.
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Figure S6: The purple line with green points plots the same relationship as seen in Figure 1, panel (b) in the
main text. The red line depicts the functional form produced by the defined linear spline. As can be seen,
there is close correspondence between the slopes between the linear spline function and the midpoints of the
temperature bins from Equation 1.
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Figure S7: This figure reproduces Figure 5 from the main text, employing the estimated coefficients from
Equation 1 directly to conduct the future forecast. As can be seen, because many constituencies do not
completely shift from one temperature bin to another, their change from 2010 to 2050 to 2099 is largely
determined by changes in annual precipitation, given by the negative linear slope on annual precipitation
from Equation 1. However, as can be seen, even with this forecasting procedure, the median constituency
is expected to see a notable reduction in incumbent party vote share due to future climate change as
constituencies are pushed into different temperature regimes on average.
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Figure S8: This figure reproduces Figure 6 from the main text, employing the estimated coefficients from
Equation 1 directly to conduct the future forecast. Because many constituencies do not completely shift from
one temperature bin to another, their change from 2010 to 2050 to 2099 is largely determined by changes in
annual precipitation, given by the negative linear slope on annual precipitation from Equation 1. This results
in a high intra-country range in predicted constituency changes to incumbent vote share, as represented by
the error bars in this figure. However, as can be seen, even with this forecasting procedure, the countries
predicted to be most affected by future warming, as well as the magnitude of these average predictions at the
country level, remain similar.

Constituency-Level Forecast

To conduct the forecast plotted in Figure 5 in the main text, I first calculate the 2010, 2050, and 2099
average maximum temperature, minimum temperature, and precipitation forecasts from all 21 of NASA’s
NEX GDDP bias corrected statistically downscaled (BCSD) climate models23 (drawn from the CMIP5 model
ensemble7 using the RCP8.5 ‘business-as-usual’ model scenario8). This gives me a yearly average value for
each grid cell across the globe. Since the NEX data do not provide average temperatures directy, I take the
average between maximum and minimum temperatures as the yearly average temperature. Next, I extract –
using spatial weighting – both the annual temperature and sumtotal annual precipitation forecasts to the
constituency boundaries in the historical data for each of 2010, 2050, and 2099. These forecasts then represent
the constituency-levl annual climate model projections across all 21 climate models in the NEX data.

I then employ the fitted spline model from SI: Main Forecast Model to calculate the fitted values associated
with the historical model for each future year for each of the 21 BCSD climate models. Then, for each
constituency-year and model, I subtract the fitted values in 2050 from the baseline period of 2010 and then
take the marginal difference from 2050 to 2099. This procedure results in an estimated change in incumbent
party vote share due to climate change for each constituency-year, for each climate model. I then take the
average for each constituency across the 21 models and present these values in panel (b) in the main text
Figure 5.

Country-Level Forecast

To calculate forecasts at the country level for 2050 and 2099, I again employ the spline fit from SI: Main
Forecast Model to calculate the difference in fitted values for each constituency, for each climate model. In
this forecast, I calculate the difference between 2050 and 2010 and between 2099 and 2010, respectively. I
then, for each country in the data, take the average predicted change across all of a country’s constituencies
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in a given future year and use this as the country-level prediction in Figure 6 in the main text.

The black error bars in this plot represents the 2.5th to 97.5th percentile range of constituency-level
predictions across all climate models within a country. Countries that have larger error bars have greater
climatic heterogeneity within in them and/or increased climate model uncertainty regarding changes to their
future temperature and precipitation distributions.
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