Demographic and Political Change: The Great Migration’s Impact on the Ideological and Policy Preferences of Elected Officials

Chris Miljanich*
cmiljanich@ucsb.edu

University of California, Santa Barbara

February 18, 2020

DO NOT CIRCULATE OR CITE WITHOUT AUTHOR’S PERMISSION.

Abstract

The first and second Great Migrations were two of the largest demographic events in American history, and they fundamentally changed the social, cultural, and economic makeup of the Northeast, Midwest, and West. However, existing data limitations and threats to inference have made identifying their impact on the political system challenging. Using a novel dataset, identification strategy, and historical passenger railroad routes as an instrumental variable, this project identifies the causal impact that the Great Migrations had on the ideological and policy preferences of Congress members in the Midwest and Northeast. Results show that this demographic event affected the preferences of elected officials in some, but not all, areas that received Black migrants, that Black migration was associated with a shift to more liberal ideological and policy stances, and that Congressional districts with major North-South rail lines received the largest number of Black migrants. This paper not only contributes to our understanding of the dynamics of constituent-Congress member relations, but also to the way large demographic events affect the political system.

*Ph.D. Student, Department of Political Science, University of California, Santa Barbara.
Introduction

How does politics change? This question has long fascinated political scientists, and forms the core of many subfields within the discipline. Whether through shifts in public opinion, electoral realignments, or changes in party platforms, myriad explanations have been forwarded that explain why, and how, politics does not exist in a static state.

Shifts in public opinion serve as one possible explanation for political change. In this scenario, widespread changes to individual-level attitudes and opinions shift aggregate opinion, with subsequent impacts on elections and public policy. Yet, there is mixed evidence of the degree to which changes in public opinion occur. Some studies support the assertion that aggregate opinions change and evolve over time (Shaw 2009; Berinsky et al. 2011). However, a large body of research also shows that individual-level attitudes remain relatively stable over the life cycle, and that aggregate attitudes seldom shift (Campbell et al. 1960; Page and Shapiro 1992). Altogether, there is mixed evidence that aggregate shifts in opinion occur, and, as a result, we may be unsure as to whether changing opinions serve as a catalyst for political change.

Political elites have been explored as a possible source of political change, as well. This research suggests that elites are responsible for cultivating public opinion by taking stances on issues, which, in turn, affects the public’s stances on key topics (Brady 2001; Layman and Carsey 2002). This holds especially true for issues that exist in a low-information environment (Sniderman, Brody, and Tetlock 1991; Gilens and Murakawa 2002), one in which the public looks to leaders for direction. Despite the purported impact of elites, however, some scholarship shows that public opinion is relatively unaffected by changes in elite preferences (Edwards III 2009), or that elites, in fact, may respond to public opinion (Page and Shapiro 1992; Sobel 2001).

Another strand of literature probes electoral realignments. By nature, electoral realignments undoubtedly create political change, but the impetus behind these changes
is debated. Some argue that realignments are cyclical in nature, and that they operate under some well known causal mechanisms (Key 1955; Burnham 1965; Sundquist 1973). However, competing research claims that many of these mechanisms are only plausible at best (Mayhew 2002). Mayhew (2002), for instance, takes issue with the commonly accepted notions that electoral realignments occur because of fluctuations in voter turnout, that strong showings by third party candidates can lead to realignments, and that they are driven by ideological polarization. All told, while realignments may be a cyclical feature of political systems, the underlying causes of them are not well understood, or are highly debated.

Additional work shows that economic catastrophes, war, and other sociopolitical events can impact the political system (Kelleher and Wolak 2006; Bartels 2013). Events such as these can have dramatic impacts on socialization into politics (Hershey and Hill 1975; Erikson and Stoker 2011), shift public opinion (Bishop 2014), affect partisan identification (Dunlap and Wisniewski 1978), and influence election outcomes (McAllister 2006; Jacobson 2010). Despite this, isolating the impact of salient events can be difficult because they do not occur at regular intervals. Moreover, they are challenging to define, and difficult, if not impossible, to predict. Last, grounding seemingly random events in theory is challenging, sacrificing our ability to identify their impact(s) on the political system.

While politics is ever-changing, the impetus behind these changes is not well understood. What, then, produces mass shifts in public opinion, explains long term changes in voting patterns, describes the gradual evolution in policy preferences, and dictates other forms of political change over time? I argue that political change of this sort can be understood through demographic shifts. That is, changes to the demographic composition of electorates fundamentally affect the political system in profound ways. By way of demographic processes, the distribution of an electorate’s aggregate set of polit-

\[^1\text{In total, Mayhew lists fifteen features that, in the existing literature, are core features of realignments. Mayhew critiques each of these features \textit{seriatim}.}\]
ical preferences, attitudes, and actions changes, which, in turn affects, aggregate public opinion, voting, elections, and policy. Over time, the gradual replacement of members in an electorate, either through the exit of some, or the entrance of new members, fundamentally changes the electorate's ideological foundation, which, through voting and other forms of political engagement impacts the political system.

This paper develops a novel theory of political change to illustrate the effect that demographic shifts have on politics. I leverage one of the largest demographic events in American history, the Great Migration, to show that the entrance of millions of Black migrants to congressional districts largely devoid of their presence fundamentally changed the ideological and policy preferences of congressmembers representing these districts. To do so, I combine a 40 year demographic panel for all congressional districts in the US with DW-Nominate scores and historical railroad routes to identify the impact of this demographic event. I show that congressmembers representing districts receiving Black migrants become considerably more liberal, and are more likely to vote in favor of the Civil Rights Act of 1964. The results are robust to multiple identification strategies, including fixed effect models, instrumental variables, and pooled OLS.

The remainder of the paper proceeds as follows. In the next section, I develop my theory of political change. I then describe the Great Migration and situate it as the case used throughout the paper. I introduce the data and measures used in the paper, show the results, and end with a discussion and conclusion.

A Theory of Political Change

As populations change, so can an electorate’s preferences. Whether through mortality, fertility, or migration, compositional changes to the demography of an electorate alter its preferences because its constituent units change. Through these three processes, existing individuals may leave the electorate (i.e., mortality and out-migration), and new
individuals may enter it (i.e., fertility and in-migration). Assuming that individuals who
leave, or enter, the electorate hold different political preferences than those who remain
in it, aggregate preferences change because the underlying distribution of preferences in
the electorate changes.

Population change operates through three channels: mortality, fertility, and migra-
tion. Mortality describes total deaths, fertility is total births, and migration is the dif-
terence between in-migration and out-migration. These features can be used to describe
population size at time t by:

$$P_t = P_{(t-n)} + (B_{(t-n,t)} - D_{(t-n,t)}) + (IM_{(t-n,t)} - OM_{(t-n,t)})$$ \(1\)

where P_t is population size at time t, $P_{(t-n)}$ is determined by population size at the begin-
ing of the previous period, the difference between total births and total deaths
between the previous period and the current period, $(B_{(t-n,t)} - D_{(t-n,t)})$, and the differ-
ence between in-migration and out-migration over the same periods, $(IM_{(t-n,t)} - OM_{(t-n,t)})$.

This equation makes clear how mortality, fertility, and migration alters an electorate’s
population composition. Fluctuations in death and fertility rates have direct impacts on
the removal and introduction of individuals to an electorate, by determining who dies and
who is born. Moreover, increased mortality rates among different population subgroups
(e.g., older cohorts) can affect a population’s median age. Relatedly, differential fertility
rates can have a similar effect, but in determining who is born into an electorate.

Migration also affects the population composition of an electorate. Naturally, if the
total number of out-migrants is larger than the number of in-migrants, an electorate’s
population size will, *ceteris paribus*, decrease. The opposite holds true when in-migration
is greater than out-migration.

In addition to explaining population size, equation 1 also implies that fundamental
demographic processes can affect an electorate’s aggregate political preferences, as well.
When population change occurs, status quo preferences may be upset by new individuals exiting, or entering, the electorate who hold preferences that are different from the average of the electorate itself. This is because individuals responsible for population change likely hold preferences. When they bring their preferences into (or out of) an electorate, the electorate’s preferences change because the distribution of preferences changes in the aggregate. All told, while the primary consequence of demographic processes are changes in population size and the descriptive demographic composition of an electorate, a secondary effect includes the way that the preferences associated with the individuals creating this change get absorbed into the electorate, and change its status quo.

Two main assumptions are needed for this process to occur. The first is that individuals leaving, or entering, and electorate hold different political attitudes and preferences than those who remain in it. The second is that attitudes and preferences remain stable. In the discussion below, I explain these assumptions in greater detail, and argue that they are reasonably likely to hold.

For demographic change to have any impact on an electorate’s aggregate preferences, those entering the electorate must hold preferences and attitudes that are different from those already in it. If attitudes and preferences were the same between these groups, then the addition (subtraction) of certain individuals would simply maintain the status quo preference set of the electorate. This situation would arise if, for instance, demographic processes affected all groups in an electorate equally such that death rates, fertility, and migration was equally likely to occur across all possible populations. Alternatively, this could occur if individuals exiting (entering) an electorate held identical preferences to those who remain, or already exist in it.

However, it is well documented that demographic processes do not affect subpopulations equally. Mortality rates, for example, vary by age and country (Zheng, Yang, and Land 2016; Torre et al. 2016), certain racial and ethnic groups (Hummer et al. 1999; Bos
et al. 2005), and individuals from particular socioeconomic backgrounds (Guest, Almgren, and Hussey 1998; Huie et al. 2003). Additionally, migration is more likely to occur among individuals with either high or low education levels (Caponi 2010), and fertility rates have historically been higher among certain immigrant groups in the United States (Kahn 1994; Carter 2000; Parrado and Morgan 2008). Importantly, political attitudes and preferences have also been shown to vary considerably across demographic groups, as well. Preferences and attitudes, for instance, are shown to vary by race/ethnicity (Sanchez 2006; Tate 2010; Segura 2012), income (Ellis 2017), age (Wong 2000; Tilley 2002), and gender (Verba, Burns, and Schlozman 1997). Because demographic processes vary across population subgroups, and because political attitudes and preferences also vary across these groups we can be confident that population change effectively brings, or removes, individuals and groups from electorates that are different from the status quo, both demographically and politically.

Even when demographic change occurs, its potential impact on an electorate’s aggregate preferences would be stymied if individual-level attitudes within subpopulations change. This is because initial changes to an electorate’s preferences would be overrun by long-term shifts back toward the original status quo. In one scenario, for instance, demographic change could introduce a new population into an electorate, one that holds preferences different from the status quo. However, this group could, over time, experience a gradual shift in its attitudes that brings it in alignment with the status quo. In this scenario, short-run disruptions to the existing electorate’s preferences would gradually taper off because the new group comes to parallel its preferences in the long run.

There is ample evidence indicating that attitudes and preferences remain relatively stable over one’s life. At the individual-level, attitudes can become crystallized during early adulthood (Osborne, Sears, and Valentino 2011), and remain stable into adulthood.

I am careful to note that Parrado and Morgan (2008) shows that fertility rates for Mexican-American immigrants converge to that of whites over time, even though they initially hold higher fertility goals. A similar argument is made by Carter (2000), as well.
and later life (Alwin, Newcomb, and Cohen 1992; Sears and Funk 1999). Moreover, individuals are less open to change as they age (Stoker and Jennings 2008). This is especially true for partisanship and central issues that form the core of one’s political identity (Jennings and Markus 1984; Krosnick and Alwin 1989). A similar pattern exists in the aggregate, and it has been shown that, even if individual-level attitude change occurs, aggregate attitudes remain stable (Campbell et al. 1960; Page and Shapiro 1992). Certainly, attitudes and preferences may change, but there is ample evidence indicating that such changes are trumped by long-term attitudinal stability.

When these two assumptions hold, as I argue, demographic processes can change an electorate’s ideological and preference set, and political change can occur as a result. A practical difficulty, however, lies in identifying examples of demographic change that can be used to elucidate this point. Data limitations, threats to inference, and merely identifying examples of demographic change create this challenge. In the United States, however, arguably the most salient example of demographic change that can be used to test the above theory is the Great Migration, the movement of millions of Blacks from the South to the North, Midwest, and West during the 20th Century. I leverage this mass migration to show that demographic change affects preferences and ideology in the way described above. I introduce this case in the next section and situate it within the context of this study.

The Great Migration

The Great Migration represents the mass movement of Blacks from the South to the Northeast, Midwest, and West, during the 20th Century. The migration can be broken into two eras that correspond to World War I (WWI) and World War II (WWII). This first migratory wave began at the beginning of WWI, when a labor shortage in the North
and Midwest emerged because of an exodus of male laborers to join the war effort. Southern-born Blacks migrated to these areas in search of work and better economic opportunities (Collins 1997). Cities with relatively small Black populations experienced a sudden surge in their population, and Black population centers became established in these areas. Black migration continued after the war ended, and even increased in the years thereafter (Boustan 2017).

A second migratory wave emerged during WWII. Again, labor market shortages and economic opportunities in the non-South attracted Blacks to the North, Midwest and, now West. Emergent wartime airline and shipbuilding industries, along with other economic opportunities, in the Pacific states brought Black migrants to areas that did not experience their migration during the first wave of migration (Nash 1985; Johnson 1994). In total, during the 1950s approximately 2.5 million southern-born Blacks resided in the North, Midwest, and West (Tolnay 2003, p. 210). Black out-migration from the South continued, but slowed, in the decades following, and reverse migration began to occur during the 1990s (Frey 2004; Boustan 2017).

The Great Migration was one of the largest demographic events in US history, and it serves as a useful case to understand the impact that demographic change has on the political system. The migration brought millions of Black people to areas largely devoid of their presence, both physically and politically. Black migrants brought their political ideologies and preferences with them, voted, shared their opinions, and exerted force on the political system. Using novel data and identification, I leverage this source of exogenous demographic change to provide robust evidence for the theory developed in the previous section. All told, the results indicate that, indeed, demographic change can have a profound impact on the political system, and when the composition of electorates change, so do its preferences, and those of its elected officials.

See Yokelson (1998) for a detailed description of military service during World War I.
Data

Congressional District Data

Congressional district demographic data is from the Congressional District Data File (Adler, n.d.). This data contains information on economic, social, and geographic variables for the 78th through 105th congresses (1943 - 1998), for each congressional district in the United States. For example, select variables include population-level characteristics such as total Black population, total population, and economic characteristics such as number unemployed, and number of manufacturing jobs located in the district.

Much of the social, economic, and demographic data contained in this dataset was compiled from US decennial censuses’ Congressional District Databooks or the Census of Population. Geographic information such as whether the district is on the coast or within 100 miles of Washington DC is from geographic data sources such as United States Geological Survey maps, Rand McNally Road Atlases, and congressional district maps. In total, I use data from each congress in this data set, covering the period from 1943 to 1998. Data from this sources forms the core of the demographic explanatory variables in my analyses.

DW-Nominate and Voteview

The primary dependent variable is an ideal point estimate of congressmembers’ ideological position. This is taken from DW-Nominate’s first ideological dimension, which represents the typical liberal-conservative ideological spectrum in American politics, for each House of Representatives member (Lewis et al. 2019). Additional data includes roll call votes for each House member. Together, this is merged with the congressional district data for to create a panel dataset of district-level social, economic, and demographic characteristics, as well as ideological and roll call vote data for each district’s respective House member(s). This results in a panel dataset covering the 78th through
District Shapefiles and Railroad Routes

I use railroad routes as an instrumental variable in part of the empirical analysis. The instrument is created from two data sources: congressional district shapefiles (Lewis et al. 2013), and a shapefile of railroad routes in the continental US (Atack 2016). The district shapefiles cover the 78th through 105th congresses. The railroad data covers major railroad routes in the continental US that were in operation between 1830 and 1972. The two data sources were combined such that, for every congress, the Euclidean distance between the centroid of a congressional district and the nearest railroad line was calculated. This operation is performed for each congress-district dyad, and the final distances are merged with the demographic and political data discussed above.

Design and Identification

Panel Setup

The unit of analysis is the congressional district. Congressional districts are used because demographic data is available at this geographic level. Additionally, I can couple this information with DW-Nominate scores to observe how the ideological position of congressmembers representing these districts changes over time. Effectively, I characterize this as observing how a district’s ideology shifts in response to demographic change.

I balance the panel to include districts that are observed in each of the 78th through 105th congresses, covering the period from 1943 to 1998. This time period is advantageous because the beginning of the second Great Migration began in the early 1940s, when the United States entered World War II (Gregory 2009). As such, I can model the

\footnote{Please see Appendix for an intimate discussion on how railroad routes were selected. This is also discussed in the section describing identification and research design.}
beginning of the second wave of migration, and observe population change over multiple decades. In total, each congressional district is observed 28 times.

The following two-way fixed effects model is estimated:

\[Y_{dt} = \alpha_d + \lambda_t + \rho \log(\text{Black}_{dt}) + X_{dt}'\beta + \epsilon_{dt} \]

(2)

where \(Y_{dt} \) is the outcome of interest, \(\alpha_d \) is a district fixed effect, and \(\lambda_t \) is a time effect for the congressional session. The primary independent variable is \(\rho \log(\text{Black}_{dt}) \) which represents district \(d \)'s logged total Black population in year \(t \), and \(X_{dt}'\beta \) is a vector of control variables for district \(d \) in year \(t \). The main fixed effect models in the analysis use this specification.[5]

Instrumental Variables

In addition to the fixed effects models, I use instrumental variables (IV). Although two-way effect models are beneficial because time-invariant confounders can be controlled for, and because time-varying characteristics can be explicitly modeled, there may remain a correlation between the treatment and the error term. In the context of this study, such a scenario could arise if \(\rho \log(\text{Black}_{dt}) \) is correlated with unmodeled aspects of the treatment assignment process, such as the ease of navigating existing migration routes.

To combat this possible source of confounding, I instrument district \(d \)'s total Black population in year \(t \) as a function of the distance between the centroid of district \(d \) in year \(t \), and the nearest rail line. That is, for each time period, I minimize the distance between the centroid of a district and the nearest railroad line.

Because of the panel structure of the data, I am able to estimate a panel fixed effects instrumental variables (PFEIV) estimator. This is similar to cross-sectional instrumental variables, but allows for within-unit changes over time to be modeled, and

[5] Note that this specification remains the same even when the dependent variable changes, and the pool of district-congressional term dyads change, as well.
for unobserved time-invariant confounders to be differenced out of the equation. Effectively, this leverages the benefits of traditional panel fixed effects models together with IV estimators that create exogeneity for the endogenous regressor(s).

The first stage of this equation is modeled as:

$$\log(Black_{dt}) = \alpha_d + \lambda_t + \tau \log(Distance_{dt}) + X'_{dt} \beta + \epsilon_{dt}$$ (3)

where, as in (1), there are unit and time effects, as well as a vector of controls. In this setup, however, logged total Black population is the endogenous regressor that is modeled as a function of these covariates, as well as the instrument, $\tau Distance_{dt}$, which is the minimum distance between the centroid of district d in time t and the nearest rail line, in meters. The second stage is modeled as:

$$Y_{dt} = \alpha_d + \lambda_t + \rho \log(\hat{Black}_{dt}) + X'_{dt} \beta + \epsilon_{dt}$$ (4)

which is identical to equation (1), but with predicted values for logged total Black population ($\rho \log(\hat{Black}_{dt})$), taken from the first stage equation.

PFEIV estimators rely on the following assumptions for consistent estimation (Murtazashvili and Wooldridge 2008; Wooldridge 2010):

1) $E(\epsilon_{dt}|z_{d1}, z_{d2}, z_{d3}..., z_{dT}) = 0$, for $t = 1, ..., T$

2a) $\text{rank} \sum_{t=1}^{T} E(\tilde{z}'_{dt} \tilde{z}_{dt}) = L$, where $\tilde{z}_{dt} = z_{dt} - \bar{z}_d$, and L is a $(1 \times L)$ vector of instruments.

2b) $\text{rank} \sum_{t=1}^{T} E(\tilde{x}'_{dt} \tilde{x}_{dt}) = K$, where $\tilde{x}_{dt} = x_{dt} - \bar{x}_d$, and K is a $(1 \times K)$ vector of independent variables.

3) $E(\epsilon_d \epsilon_d' | z_{dt}, c_d) = \sigma^2_{\epsilon} I_T$

Importantly, and as Wooldridge (2010) notes, PFEIV does not rely on the assump-
tion that $\mathbb{E}(z_{dt}c_d) = 0$. Considering this, we need not make the assumption that the instrument is unrelated to the unobserved effect. I rely on PFEIV for the majority of the instrumental variables analysis.

Treatment Assignment and Railroads

The logic behind distance as an instrumental variable is because of the migratory process. During much of the Great Migration, a primary source of transportation for Black migrants was passenger railroads. During the period of the migrations, many Southern railroads either had direct service to Midwestern and Northeastern states, or shared a connection with a major rail line that passed through these areas. For example, Grossman (1989) writes that a particularly noteworthy passenger railroad for Black migrants was the Illinois Central Railroad, which linked Midwestern cities such as Chicago and St. Louis with Southern cities such as Memphis, and New Orleans.

Railroads not only served as a form of transportation, but also as a source of employment, as well. During the migrations, railroad companies in need of labor offered free transportation for northern-bound Black migrants who pledged to work on the railroad. This was true, for instance, of the Pennsylvania Railroad (Bodnar, Simon, and Weber 1982), which recruited over 16,000 Black migrants in 1916 (*The Great Migration* 2014). In this way, railroads not only operated as a transportation source alone, but also as a source of employment for northern-bound Blacks.

Given the historical relevance of railroads during the Great Migration, leveraging them to improve estimates of the impact of Black migration is useful. Theoretically, it is likely that, *ceteris paribus*, congressional districts located nearer historically-relevant rail lines received more Black migrants. Simply, it is less costly to migrate to a destination location that is nearer and, as a result, we are likely to see that migrants settled in districts that were proximate to railroad routes. In the mind of a potential migrant, s/he

6 This is similar to traditional fixed effect models, where $\mathbb{E}(x_{dt}c_d) = 0$ need not hold to generate consistent estimates of x.

13
might choose to move to a location that is near because it reduces the costs associated
with doing. Modeling this aspect of the treatment assignment process is crucial if un-
biased estimates are to be generated. However, because traditional fixed effects models
can not account for this process, the coefficient for ρ may be biased.

To model the migratory process in the first stage, I create a measure of the distance
between the geographic center of each district in every time period, and the point on
a rail line that is closest to the centroid of each district. This process relies on data
from two sources: the congressional district and railroad shapefiles discussed earlier,
and it proceeded in three steps. First, I manually identified all rail lines that connected
the South to the Northeast and Midwest.\footnote{Due to the comparatively sparse railroad network in the Western US, I exclude this region from the IV analyses.} This was a first cut to identify a potentially
relevant set of railroads. I then identified whether each rail line was named to a particular
railroad company or route. If it was, I checked the name against the historical record
to identify whether it was, or could have been, used during the Great Migration. If a
rail line was mentioned in the historical record as being relevant or used by migrants,
I kept it in the final sample. Railroad lines that did not meet these three criteria were
excluded from the analysis. While this may omit potentially relevant railroad routes, it
is, by design, intentionally so as to reduce the potential for Type I errors.

After this final set of rail lines was established, I manually inspected each spatial line
segment of each rail line to ensure that it was, in fact, associated with the rail line that
was named. I did this because some sections of rail lines were not named, despite them
being a part of, or next to, named, relevant lines. If portions were not named, I deleted
them from the full line segment to ensure that only rail lines that were verified to have
a name \textit{and} be relevant were kept for the final sample. Doing so safeguards against
including potentially irrelevant or erroneous lines in the sample, which would increase
measurement error.

After the final sample of railroads was identified, I used the congressional district
shapefiles to calculate the distance metric. This was done iteratively for each congres-
sional session for which there was available congressional district demographic data. In
total, distances were calculated for all congressional districts located in the Midwest and
Northeast, from the 78th through 105th congresses.

Exclusion Restriction

Obtaining unbiased estimates of ρ in the PFEIV setting requires that instrument and
the error-term in the second stage are unrelated (i.e., Assumption 1 from above). If they
were not, then the instrument would have a direct effect on the outcome, violating the
exclusion restriction, and sacrificing our ability to generate consistent estimates. While
this assumption is not directly testable, I argue in this section that it is likely to hold.

For the instrument to have a direct impact on the outcome in the second stage
and violate the exclusion restriction, it would have to directly impact the ideological
preferences of elected congressmembers. This is unlikely for two reasons. First, the
railroad routes used to make the instrument were built between 77 and 108 years prior to
1943, the first year of measurement for this study. Given the time gap between railroad
construction and the first year of observation in this study, railroads and ideological
preferences are likely unrelated because the congressmembers in office between the 78th
and 105th congresses could have had no impact on railroad routes that were created
roughly one century before.

Second, while railroads may have affected economic and labor market outcomes that,
in turn, affected the ideological preferences of congressmembers during the period under
study, these possible sources of confounding are controlled for by $X'_{di}\beta$ in the PFEIV
models. For example, one possibility is that railroads could have increased employment
in certain sectors of the economy such as manufacturing and blue collar jobs. In re-
response, this may have attracted certain types of migrants to districts that experienced
increased economic activity in these sectors. Alternatively, congressmembers may have
changed their ideological preferences to accommodate new industries by becoming more conciliatory toward industries that were experiencing growth. However, these possible sources of confounding are teased out by the vector of control covariates in equation (3). So, in the least, the exclusion restriction would hold, even if it is conditional on X_{dt}.

There are also geographic factors that lend credence to the exclusion restriction. First, the exact siting of railroad routes is partly a function of fluctuations in geography, terrain, and topography (Yi 2017). As such, the distances used in the instrument may operate as a partial function of geographic features that vary because of the particular route that a railroad is, geographically, forced to take. The particular location of the node that is most proximate to the centroid of a given district would therefore occur because of random variation in railroad routes. Atack and Passell (1994), for example, show that subtleties in physical geography determined the exact placement of railroad routes.

Relatedly, the Great Migration was primarily to urban areas in the non-South (Cahill 1974, Tolnay and Beck 1992, Baldwin 2007, Price-Spratlen 2008). While, in theory, it might make sense to calculate distances between railroad routes and these areas because of the relevance of cities and large towns, doing so would correlate the instrument with city-level political characteristics that might affect a congressmember’s ideology. This is because cities and major urban areas had direct impacts on the migration process and congressmember ideology. The former occurs because cities served as primary labor markets that migrants selected into, and the latter is because congressmembers would have naturally been affected by the political climate of large cities, perhaps because of a strong electoral base in these areas. By setting the distance metric to the centroid of a district it is orthogonal to urban-area characteristics that attracted Black migrants and influenced congressmember ideology. In this way, the centroid is agnostic to the economic and political characteristics located in urban areas that could correlate the instrument with the outcome, and violate the exclusion restriction.
Existing literature also suggests that railroad routes and distance metrics can be an effective instrument. Black et al. (2015) uses the distance between place of birth and railroad lines as an instrument for migration to identify the impact of the Great Migration on Black mortality. Work by Ananat (2011) also leverages railroads as an instrument, but uses the railroad length as an instrument to identify how inflows of Black migrants affected spatial segregation in the US. As argued above, Ananat (2011) suggests that railroads routes are a valid instrument because their placement had less to do with social and economic concerns and more to do with business leaders and engineers who sited them according to their proximity to surrounding locations and ground slope (See also Atack and Passell 1994 and Wellington 1911).

There are additional studies that leverage distance as an instrumental variable, as well. Card (1993) uses geographic proximity to university as an instrumental variable to estimate returns to schooling. Later work by McCleary and Barro (2006) uses distance from the equator to estimate the effects of economic development on levels of religiosity, and Voors et al. (2012) uses distance to Bujumbura as an instrument for violent conflict. Further work in economics uses the distance between African ethnic groups and the coast during the slave trade to identify the effect of the trade on mistrust in Africa (Nunn and Wantchekon 2011).

Medical research has also used geography as an instrumental variable. Travel time between a mother’s home and the nearest neonatal intensive care unit (NICU) is used to examine whether superior NICU facilities reduce childhood mortality among high risk infants (Baiocchi et al. 2010). In Baiocchi et al. (2010), travel time is calculated as the time from the centroid of a mother’s zip code to the nearest high- and low-level hospitals (p. 1286). McClellan, McNeil, and Newhouse (1994) leverage differential distances to hospital-type to estimate the effect of treatments for acute myocardial infarction and elderly.

Although the exclusion restriction is not directly testable, there is evidence that it
holds in the context of this study. As discussed, the railroad lines used for the instrument were sited approximately one century before the first year of observation in this study. Given the large time gap, ideology and the instrument are plausibly unrelated. Even if they were, the controls included in the instrument are likely to soak up potential sources of confounding. Additionally, the natural geographic variation that determined railroad siting, along with using the centroid of a district, likely make the instrument orthogonal to factors affecting both Black migration and congressmember ideology. Last, there are myriad studies using distance as an instrument generally, and a handful that use railroad routes specifically for the analysis of the Great Migrations, specifically. This lends credence to similar identification used in this study. Altogether, there is ample evidence that the instrument is plausibly exogenous, and that the exclusion restriction is not violated.

Stable Unit Treatment Value Assumption

A related concern is whether district d’s outcomes are independent of the treatment statuses of other districts. Formally, this is represented by SUTVA, which states that the potential outcomes of unit d are unaffected by the treatment assignment mechanism and the treatment status of other units (Morgan and Christopher 2017). In this setting SUTVA would be violated if demographic change occurring in neighboring districts affects the potential outcomes of unit d itself.

I argue that SUTVA is not violated in this context. Congressmembers are responsible for their particular district, and it is unlikely that they would respond to demographic changes occurring in neighboring districts. This is motivated by the fact that congressmembers are elected by voters in their district alone, and, to have the best shot at winning an election or remaining in office, they must act according to their electorate’s preferences (Mayhew 1974). Considering this, it is unlikely that congressmember ideology and policy preferences are affected by demographic change occurring around them. Even if
this assumption is relaxed such that representatives are aware of what is going on in
neighboring districts, it is still unlikely that this awareness would affect their ideological
preferences because they must heed to the demands of their particular electorate, not
those they are surrounded by.

Measures

The primary independent variable is $\rho_{\text{Black} \text{Pop}_{d,t}}$. This represents the total Black pop-
ulation in district d in year t, and can be conceptualized as the treatment. There are
multiple district-level control variables used, as well. These variables are intended to
soak up important social, economic, demographic, and labor market characteristics that
may be associated with an elected official’s ideology and total Black population (i.e.,
endogenous variables). Select control variables include number total number of individ-
uals employed in manufacturing jobs, number of blue collar workers, total population,
and percent unionized in the state.

There are two core dependent variables used in the analysis. The first is DW-
Nominate’s first ideological dimension. This dimension is the represents the typical
liberal - conservative ideological spectrum in American politics, and ranges between [-1,
1]. Values closer to -1 indicate are more liberal and values closer to 1 are more con-
servative. For each district-congressional term dyad, the mean score on this variable
is calculated. The mean is used because in some cases there are multiple elected con-
gressmembers for a single district (e.g., death, retirement). In all, this variable is used
to observe ideological change among elected officials in response to demographic change
within their district.

The second dependent variable is the roll call vote on the Civil Rights Act (CRA). I
leverage this variable to observe how demographic change might affect observed roll call
voting behavior among elected officials. For example, it could be that congressmembers
representing districts that experienced a larger increase in the Black population were more likely to vote in favor of the Civil Rights Act because of increased pressure from the Black electorate. I test for this by running a similar model to the one described above, but by restricting the regression for the 88th Congress, the term in which the act was voted on. The fixed effect and PFEIV models use a near identical specification, but the latter uses predicted Black population from the first stage.

Results

Fixed Effect Models

Equation 1 is estimated on the entire sample, across all years. As Table 1, column 1, shows, the coefficient for the log of total Black population is -0.09, and is significant to \(p < .01 \).\(^8\) Substantively, this means that a one percent increase in total Black population is associated with a .0009 unit decrease in the nominate score. This aligns with the theoretical expectation that increased Black presence is associated with a leftward drift in a district representative’s ideology.\(^9\) The log of total population is significant, as well, but is positively associated with the nominate score, meaning that increased population size is associated with an ideological shift to the right. Logged total number employed in construction is significant to \(p < .01 \), and is associated with a rightward drift in ideology, and the log of number employed to the same significance level, but is associated with a leftward drift in ideology.

I subset the above model to only include states located in the Northeast and Midwest, and run the same specification.\(^10\) Table 1, column 2, shows that the estimates are roughly

\(^8\)All standard errors are estimated at the congressional district level.
\(^9\)Note that this can occur because of an ideological shift over time for an incumbent official, or because more liberal officials are being elected. I make no such claim as to which is occurring here.
\(^10\)The states included in this regression are Connecticut, Delaware, Massachusetts, Maine, New Hampshire, New York, New Jersey, Maryland, Rhode Island, Vermont, Pennsylvania, Ohio, Missouri, Michigan, Indiana, and Illinois. These states were chosen on the basis of being located in regions that received Black migrants during the Great Migrations. States in the West are not included because railroad densities are not high enough to create the instrument used in later regressions. To keep the sample
similar to those observed in the full sample. The log of total Black population remains of the same sign and significance. Total population is no longer significant in this model, however. Logged total manufacturing jobs is associated with a leftward shift in the nominate score, though it is only significant to \(p = .07 \). The coefficients for construction and unemployment remain the same direction as in the full sample, though the former is now significant to \(p < .01 \).

Instrumental Variables

I first test the instrument’s association with the endogenous regressor with an F-test. Effectively, this tests whether there is a first-stage effect, and helps rule out the possibility of bias that could arise if the instrument and endogenous regressor were only marginally related. The F-test rejects the null hypothesis that the two variables are only marginally related, and the F-score is greater than 10 \((F = 262.74, df = 4679, p < .001)\). This suggests that the instrument’s relationship with the endogenous regressor is strong, ruling out possible sources of bias.

I estimate the PFEIV model for the same set of Midwestern and Northern states in the panel model above. In the PFEIV model (Table 1, column 3), the log of total Black population remains of the same sign as in the prior panel models, but the coefficient is larger at -.19. The null is again rejected to \(p < .01 \). Here, a one percent increase in a district’s Black population is associated with a .0019 point shift to the left on the nominate score. Total population remains of the same sign as the prior panel models, but is now only significant to \(p < .05 \). The coefficient for total number of construction workers is no longer significant, but the coefficient for total unemployed is, albeit now to \(p < .05 \). The coefficient remains of the same sign (i.e., negative).

I estimate an additional IV model, but only with time effects. This is because PFEIV relies on within-unit variation for the instrument, and, depending on the scope consistent, I omit western states from the analyses.
of redistricting, some congressional districts may not have changed shape. In this case, the distance between a district centroid and the nearest railroad route would remain constant, and the instrument would have little predictive power. Table 1, column 4, reports results from a pooled IV with time effects. The results are the same as the PFEIV model, and, again, the log of Black population is significantly associated with an ideological shift to the left among congressmembers ($p < .01$). The estimates for the other independent variables remain of the same sign as those in the PFEIV model, though some become statistically significant. This is because unit-level effects are not included in this specification.

The Civil Rights Act

I extend the above analysis to measure the impact that Black migration had on ideological change during the Civil Rights Movement, as well as observed voting behavior. Serendipitously, the Civil Rights Act, voted on during the 88th Congress, was legislated roughly 20 years after the second wave of migration began. This aligns nicely with the time period I have data for.

I begin by leveraging the same panel analyses as above for the fixed effect and instrumental variables models, but restrict the observations to fall between the 77th and 88th Congresses. This allows me to observe how ideology changed as a function of shifts in the Black population during the period up to, and including, the Civil Rights Movement. For the traditional fixed effect models using the full panel, the results are similar to those reported above, as Table 2, column 1, illustrates. The same is true for the PFEIV model. However, the coefficient for the log of total Black population is larger, and significant to $p < .05$. The only other significant variable is the log number of union jobs, and this coefficient is also negative, and significant to $p < .05$. In all, the results comport to our theoretical expectations, and mirror those of the previous

11 On the restricted sample for the Northeast and Midwest, the coefficients are no longer significant, but remain of the same sign. Please see Table 2, column 2, for details.
In addition to measuring ideological shift, I use the linear probability model (LPM) to estimate the effect that total Black population had on the probability that a congressmember voted in favor of the CRA. I do so because a larger Black presence within a congressmember’s district may have pressured them to vote in favor of the act. In this setup, the outcome is now a binary variable equalling 1 if a congressmember voted in favor of the CRA, and 0 if not. This setup is now a simple cross section of the 88th Congress, and I simply pool the observations together. I estimate both OLS models and an IV model, and each uses the same specification.

Table 3 provides estimates from these regressions. As is shown in column 1, the log of total Black population and the probability that a congressmember votes in favor of the CRA are negatively related on the full sample, and the null of no relationship is rejected to $p < .01$. This contrasts with the OLS and IV models shown in columns 2 and 3, which are subset to include only Midwestern and Northeastern districts. The results from the OLS (column 2) and IV (column 3) models depict a statistically significant positive relationship between total Black population and CRA vote. It is likely that the sign for total Black population changes from positive to negative when subsetting for Midwestern and Northeastern districts because, at the time that the CRA was voted on, a plurality of Blacks still lived in the South (Iceland, Sharp, and Timberlake 2013). Where conservative congressmembers were not favorable to racial equality, nor the CRA itself. Ergo, on the full sample, the coefficient for total Black population isn’t picking up the effect of demographic change, but the lasting vestiges of racial antipathy found among many Southern congressmembers.

Iceland, Sharp, and Timberlake (2013) estimate that 41.4% of all Blacks resided in the South in 1970.
Who Were the Migrants?

Relationship with Government

The above analyses show that the demographic change brought about by the Great Migration affected congressmember ideology and policy preferences. Across model specifications, identification strategies, and dependent variables, increased Black presence is associated in a congressional district with more liberal ideological and policy stances for congressmembers representing that district. But, why does this occur? Is it because southern Black migrants were more liberal than their northern counterparts which, in turn, pushed their elected officials to the left? Or, is it because of critical mass? That is, did the mere presence of more Blacks, regardless of their sociopolitical orientations, have this effect?

I am examine these questions using data from the *Racial Attitudes in Fifteen American Cities Survey*. This survey explored social attitudes toward various racial and urban issues in the United States, and the sample consisted of northern-born and migrant Blacks who, at the time of the survey, lived in one of 15 northern major cities (Campbell and Schuman 1968). The survey was conducted in early 1968, and there are 2809 observations across the entire sample.

I begin by examining trust in government, measured as a composite score of different variables. The score ranges from 3 to 9, and higher scores indicate less trustworthiness toward the government. The primary independent variable is a dummy that indicates whether the respondent lived in the South or North for the first ten years of life. Also included in the model are controls for age, total family income, education, and sex. Also included in the regression are a vector of sampling weights.

As is shown in Table 4, column 1, Blacks whose homestate region is in the South are more .39 points more trusting in government, and the effect is significant to $p < 0.05$. There is an additional sample of Whites, but the survey questions are not consistent across the Black and White samples. Because of this, I exclude the White sample from the analyses.
Family income is positively associated with trust, but the effect is only marginally significant \(p = .06 \). No other variables are significantly associated with the outcome.

I use the LPM to estimate an additional model with a binary dependent variable that takes the value of 1 if the respondent feels that laws and persuasion are the only way to increase Black well-being in the United States. I use this measure because congressmembers may experience more political pressure from individuals who see legislation and political persuasion as a means to achieve civil rights. In this scenario, increased pressure from the electorate may push an elected, or would-be, congressmember in the ideological direction of the electorate itself. If Black migrants were more (less) likely to feel this way, then their increased presence in the North could have directly affected congressmember ideology in host districts.

The coefficient estimates in Table 4, column 2, show that Blacks who spent their first ten years in the South are no different than their northern counterparts on this measure \(p = .10 \). Age and education are significantly associated with the outcome, the former to \(p < .01 \), and the latter to \(p < .01 \). The results are the same when the dependent variable is coded as 1 if laws and persuasion are mentioned in any way, whether alone or in combination with other tactics, to increase Black well-being.

Similar results are found when the dependent variable is changed measures the degree to which the respondent feels that the federal government is working to solve the problems of their city. This variable ranges from 1 to 3, with higher values indicating that the respondent feels that the government is trying less hard to solve problems. I use this measure to proxy whether they feel that the government is involved in their daily lives. Respondents who feel that the government is working to address issues may feel more efficacious toward government and, therefore, more participatory.

As with the previous regression, the coefficient for homestate is not significant \(p = \). With this, and all subsequent regressions using this data, I omit all units that respond as “do not know”, or “not applicable” from the analysis. Note that the sample is restricted to individuals who, at the time of the survey, were of voting age.
The coefficients for total family income and education are positive, and each is significant to \(p < .05 \). Black migrants are not different from their northern-born counterparts as it relates to this measure.

Leaders and Organizations

The survey also asked respondents to indicate their support for various civil rights leaders. This provides an opportunity to examine whether Black migrants displayed differing levels of support for Civil Rights holding different platforms. Civil rights leaders were not monolithic, and they displayed a great amount of variation in terms of political, social, and economic philosophies, organizing tactics, religious preferences, and end goals. I use this variation to examine whether support for particular civil rights ideologies and leaders differed between migrant and non-migrant Blacks. If differences emerge, then the shifts in congressmember ideology and policy preferences reported above could be the result of the injection of Black migrants who advocated for Civil Rights practices that were different than the status quo in the North.

I examine support for four leaders and one organization: the Reverend Dr. Martin Luther King Jr., Roy Wilkins, Stokely Carmichael, H. Rap Brown, and the National Association for the Advancement of Colored People (NAACP). Support is measured on a three point scale, ranging between approve, partly approve/disapprove, and disapprove, with higher values indicating less approval. The primary independent variable is home-state region during the first ten years of life, and I use controls for age, family income, education, and sex.

Black migrants are significantly more supportive toward Dr. Martin Luther King Jr. than their northern counterparts (Table 5, column 1). The coefficient estimate for this variable is -.10, and the effect is significant to \(p < .01 \). Southern-born Blacks are also .06 points more supportive of Roy Wilkins \((p < .05; \text{Table 5, column 2}) \). There is no difference in support for Stokely Carmichael, however (Table 5, column 3). Although,
older, higher income, and more highly educated individuals are all significantly less supportive of him. Men, however, are significantly more supportive of him. The same is true for H. Rap Brown, who sees no difference in support between migrant and non-migrant Blacks (Table 5, column 4). The additional control variables exhibit the same pattern as with Stokely Carmichael, however, and each is statistically significant. Black migrants are .06 points more supportive of the NAACP, and the coefficient is significant to \(p < .01 \) (Table 5, column 5). Men are significantly less supportive of this organization (\(p < .05 \)).

I also use the LPM to measure whether a respondent contributed money to a civil rights organization between 1963 and 1968. The outcome measure is a binary variable equaling 1 if the respondent has contributed money, and 0 if not. I use the same model specification as the previous regressions using this data. The null of no difference between migrants and non-migrants fails to be rejected (\(p = .68 \); Table 6). Each of the additional covariates is significant to \(p < .001 \), and the effects are not unexpected. Older, higher income, and more highly educated individuals were more likely to contribute. The same is true for men, who were more likely to contribute, as well.

Results from the *Racial Attitudes in Fifteen American Cities Survey* present mixed evidence for the role that Black migrants played in affected congressmember ideology. Black migrants were more trusting in government, but did not differ in the degree to which they felt that laws and persuasion were the only way to increase Black well being. Moreover, they were no different in the perception of the federal government’s role in solving everyday problems in the cities they settled in.

However, they were significantly more supportive of Dr. Martin Luther King Jr. and Roy Wilkins, and more supportive of the NAACP. Both Dr. King and Roy Wilkins were more conservative in their approach to civil rights than Carmichael and Brown, and southern Black migrants may have been more supportive King and Wilkins for this
This is further reflected by increased migrant support for the NAACP, as well, an organization that has traditionally been associated with a more temperate view toward civil rights than other organizations (Marger 1984). In all, a more conservative view of civil rights among Southern Blacks at the time may have translated to higher levels of support for more conservative leaders and organizations.

In all, there is mixed evidence that the intrusion of Black migrants pushed congressmember ideology to the left because they brought with them more liberal ideological and policy stances themselves. Despite this, they were more supportive of two important civil rights leaders, more supportive of a major civil rights organization, and were more trusting in government. If these political sentiments made their way to the ballot box or other political arenas, southern Black migrants may have acted as catalysts for congressmember ideological change because they were proponents for major civil rights leaders and organizations. Congressmembers and candidates vying for office may have recognized the sentiments of Black migrants and aligned with them to win, or remain, in office.

Even if Black migrants did not push congressmembers to the left because they were more liberal than northern Blacks, they may have done so through critical mass. An increasingly Black electorate, regardless of the ideological preferences of Black migrants and non-migrants, may have, through sheer strength, forced congressmembers to adopt more liberal policy stances and ideological preferences. In this way, Black migrants may not have brought with them new political sentiments to the North and Midwest, but may have increased the size of Black electorates in these regions to the point where elected officials had to listen to, and act in accordance with, them. Overall, however, the evidence presented here suggests that a combination of forces was at work: critical

16 Carmichael, for instance, promoted the use of the phrase “Black Power”, which Dr. King was skeptical of, and Rap Brown was a member of the Black Panther Party which, in many ways, was more progressive than the NAACP, and organization that Roy Wilkins served as executive director of.

17 Note that I am not stating that these leaders and organizations were conservative in their own right. Rather, I am noting that, relative to other leaders and organizations at the time, they were more conservative in their approach to Civil Rights.
mas surely added pressure to elites to adopt political preferences that were in greater lockstep with the increasingly large Black electorate, but southern Blacks were also more supportive of certain civil rights leaders and organizations, and this may have pressured elites in a similar way.

Discussion

The results of this paper show that demographic change affects political preferences and ideology. As Black populations increased throughout the non-South, electorates’ ideologies and preferences in the aggregate likely moved to the left, especially on racial issues. In turn, congressmembers became more liberal, perhaps in an effort to stay in ideological alignment with this emergent part of their electorate and increase their (re)election chances. In this way, demographic change not only affected the aggregate preferences and ideologies of electorates. It may also affect the preferences and ideologies of elected officials, either because of ideological drift among elected officials who wish to stay in alignment with the electorate, or through the election of new congressmembers who were in better alignment with the emergent electorate.

This speaks not only to the impact of demographic change, but also to congressmember-constituent relations. Effectively, this paper chronicles what happens to elite-level ideology when demographic change occurs within their electorate. A longstanding argument in political science is that elected officials must stay in alignment with their electorate to increase (re)election chances (Mayhew 1974), and that they actively engage with their electorates to do so (Fenno 1978). This paper may provide novel evidence of this relationship. Surely, congressmembers were aware of the demographic changes that the Great Migration brought with it, and it is likely that they faced increased pressure from the emergent Black population to pursue liberal Civil Rights and social policies. In turn, incumbent officials may have drifted in the direction of their electorates, or first-time
candidates may have presented a more liberal platform to begin with. Either way, these results speak to the way in which elected officials heed to the demands of the electorate.

Interestingly, southern Black migrants shared similar opinions about major governmental and civil rights issues of the day. In the theory section, I note that for demographic change to have any impact, those who enter (exit) and electorate must hold different preferences from those who remain, or are already, in it. Black migrants held different attitudes on some issues that northern born Blacks, but their preferences are remarkably similar. This suggests that a critical mass scenario may have been at work: the mere presence of a large, and growing, Black population pressured congressmembers to the left, even though the migrants were quite similar to the existing population.

Striking is the persistent effect of the Black population. Across nearly all specifications the coefficient estimate for total Black population is significant, and predictive in the way anticipated. This includes both shifting elite-level shifts to the left, and voting in favor of the CRA. This suggests that demographic change brought about by the Great Migration may have been a root feature of shifting elite-level party platforms on civil rights observed during the 1960s. During this era, the Republican and Democratic parties shuffled positions on racial issues, and this may have been a direct result of Black migration experienced in the decades prior. Schickler notes that the Democratic party identified Blacks as a potential source of support during the 1930s, partly due to the upheaval that the Great Depression caused. I show that not only may this be true, but also that a growing Black presence in the North and Midwest in the decades

\[\text{Note that these findings do not violate the second assumption set forth in the theory section. This is because I am not using the Racial Attitudes in Fifteen American Cities Survey to measure the impact of demographic change on an electorate’s preference set, but am examining preferences for Black people as a whole. Because electorates are not being studied with this data, the results gleaned from the analysis should be treated with caution when relating them to the assumptions devised above. Moreover, on multiple measures migrant Blacks are different than non-migrant Blacks, on core issues and attitudes.}\]

\[\text{Note that this does not discount the theory developed in the paper. This is because Black migrants likely held preferences and attitudes that were to the left of the average of the districts they migrated into. This is primarily because districts were comprised of individuals from many different racial groups, and attitudes toward civil rights and other social issues varied considerably by race. So, even though Black migrants may have been similar to northern born Blacks, they were likely to the left of other racial groups that already existed in the districts they migrated to.}\]

30
after may have paved the way for a continued alliance between these two groups, and that elites may have shifted pursued liberal civil rights stances to remain (or become) in alignment with this voter pool.

The results are robust to the inclusion of theoretically-relevant controls, and two-way fixed effects. Economic and labor market factors present a mixed bag of results. Total manufacturing jobs is associated with a leftward shift in elite-level ideology, but total construction jobs the opposite. Total number of unemployed is strongly indicative of a leftward shift in ideology, as well, but total number of union workers the opposite. Total population size is either not significant, or predictive of a rightward shift in ideology. These discrepant findings may be explained by the geographic location of certain industries. For example, it may be that locations with more manufacturing jobs are simply located in more liberal places. However, labor unions have traditionally been associated with liberal policies, yet they are associated with more conservative congressmember ideologies here.

Conclusion

Future work should examine other demographic events, such as aging, fertility, and mortality. Equation 1 makes clear that mortality and fertility affect population size, and they may affect politics as well. Differential mortality rates among birth cohorts that hold varying preferences and ideologies may affect the political systems in a way similar to what is shown in this paper. The same is true for fertility rates. Analyzing these complementary aspects of demographic change would be fruitful to gain a more comprehensive understanding of the relationship between demography and politics.

Moreover, controlling for parallel changes in ideology among individuals within an electorate would be useful as well. One of the core assumptions of the theory developed in this paper is that preferences and attitudes remain constant among individuals, and,
while this has been shown for core attitudes and preferences in other research, I am
unable to examine whether this holds in this paper, due to data constraints. To effectively
do so, I would need individual-level data for the congressional districts in this paper, over
the same study period. To my knowledge, data of this sort does not exist. Nonetheless,
existing research suggests that the assumption of no ideological change likely holds, even
if for core issues.

Last, further examination of the way that demographic changes affects congressmember-
constituent relations is warranted. There is a categorical difference between aggregate-
level ideological shifts within an electorate that occur because of shifts to individuals
already within the electorate, and the addition (subtraction) of individuals to the elec-
torate who hold altogether different attitudes. Congressmembers may be more willing
to stay in ideological alignment with constituents they are already familiar with, rather
than new entrants. However, it might also be the case that congressmembers create
political alliances with emergent populations that can be leveraged for political gain.
Evaluating this relationship can shed light on yet undiscovered connections between
elected officials and their constituents. As this paper argues, however, a relationship
between the two exists, and it can be driven by demographic change.
References

Torre, Lindsey A., Rebecca L. Siegel, Elizabeth M. Ward, and Ahmedin Jemal. 2016. “Global Cancer Incidence and Mortality Rates and Trends—An Update.” *Cancer Epidemiology and Prevention Biomarkers* 25 (1): 16–27. ISSN: 1055-9965. eprint: https://cebp.aacrjournals.org/content/25/1/16.full.pdf https://cebp.aacrjournals.org/content/25/1/16.

43
Table 1: Panel Models (77th through 105th Congresses)

<table>
<thead>
<tr>
<th></th>
<th>PFE</th>
<th>PFEIV</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>Black (log)</td>
<td>−0.098***</td>
<td>−0.057***</td>
<td>−0.188***</td>
</tr>
<tr>
<td></td>
<td>(0.011)</td>
<td>(0.013)</td>
<td>(0.056)</td>
</tr>
<tr>
<td>Total Population (log)</td>
<td>0.224***</td>
<td>0.155</td>
<td>0.363**</td>
</tr>
<tr>
<td></td>
<td>(0.061)</td>
<td>(0.113)</td>
<td>(0.153)</td>
</tr>
<tr>
<td>Manufacturing (log)</td>
<td>−0.006</td>
<td>−0.093*</td>
<td>−0.126**</td>
</tr>
<tr>
<td></td>
<td>(0.033)</td>
<td>(0.051)</td>
<td>(0.059)</td>
</tr>
<tr>
<td>Blue Collar (log)</td>
<td>0.011</td>
<td>0.082</td>
<td>0.137</td>
</tr>
<tr>
<td></td>
<td>(0.044)</td>
<td>(0.070)</td>
<td>(0.087)</td>
</tr>
<tr>
<td>Construction (log)</td>
<td>0.088***</td>
<td>0.096***</td>
<td>0.017</td>
</tr>
<tr>
<td></td>
<td>(0.023)</td>
<td>(0.034)</td>
<td>(0.053)</td>
</tr>
<tr>
<td>Unemployed (log)</td>
<td>−0.101***</td>
<td>−0.200***</td>
<td>−0.104**</td>
</tr>
<tr>
<td></td>
<td>(0.023)</td>
<td>(0.034)</td>
<td>(0.049)</td>
</tr>
<tr>
<td>Union (log)</td>
<td>0.012</td>
<td>0.028</td>
<td>−0.021</td>
</tr>
<tr>
<td></td>
<td>(0.045)</td>
<td>(0.073)</td>
<td>(0.083)</td>
</tr>
</tbody>
</table>

	✓	✓	✓	
Unit FE				
Time FE	✓	✓	✓	✓
Instrumented	✓			
Sample	Full	NE/MW	NE/MW	NE/MW
N	9832	4944	4888	4888

*p < .1; **p < .05; ***p < .01.

Notes: Standard errors, clustered at the district level, are in parentheses. All regressions use DW-Nominate’s first ideological dimension, for the 77th through 105th Congresses. Column 1 shows estimates for the two-way panel fixed effects model on the entire sample; column 2 is the same, but for districts in the Northeast and Midwest; column 3 provides two-way panel fixed effect instrumental variables estimates for the Northeast and Midwest; column 4 as the PFEIV model, but only uses time effects.
Table 2: Panel Models (77th through 88th Congresses)

<table>
<thead>
<tr>
<th></th>
<th>DW-Nominate Score</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Model Type:</td>
</tr>
<tr>
<td></td>
<td>PFE</td>
</tr>
<tr>
<td></td>
<td>PFEIV</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>Black (log)</td>
<td>−0.049***</td>
</tr>
<tr>
<td></td>
<td>(0.018)</td>
</tr>
<tr>
<td>Total Population (log)</td>
<td>0.112</td>
</tr>
<tr>
<td></td>
<td>(0.074)</td>
</tr>
<tr>
<td>Manufacturing (log)</td>
<td>−0.079*</td>
</tr>
<tr>
<td></td>
<td>(0.043)</td>
</tr>
<tr>
<td>Blue Collar (log)</td>
<td>−0.081*</td>
</tr>
<tr>
<td></td>
<td>(0.046)</td>
</tr>
<tr>
<td>Construction (log)</td>
<td>0.112***</td>
</tr>
<tr>
<td></td>
<td>(0.033)</td>
</tr>
<tr>
<td>Unemployed (log)</td>
<td>0.019</td>
</tr>
<tr>
<td></td>
<td>(0.028)</td>
</tr>
<tr>
<td>Union (log)</td>
<td>−0.119***</td>
</tr>
<tr>
<td></td>
<td>(0.046)</td>
</tr>
<tr>
<td>Unit FE</td>
<td>✓</td>
</tr>
<tr>
<td>Time FE</td>
<td>✓</td>
</tr>
<tr>
<td>Instrumented</td>
<td>✓</td>
</tr>
<tr>
<td>Sample</td>
<td>Full</td>
</tr>
<tr>
<td>N</td>
<td>3860</td>
</tr>
</tbody>
</table>

*p < .1; **p < .05; ***p < .01.
Notes: Standard errors, clustered at the district level, are in parentheses. All regressions use DW-Nominate’s first ideological dimension, for the 77th through 88th Congresses. Column 1 shows estimates for the two-way panel fixed effects model on the entire sample; column 2 is the same, but for districts in the Northeast and Midwest; column 3 provides two-way panel fixed effect instrumental variables estimates for the Northeast and Midwest.
Table 3: CRA Vote (88th Congress)

<table>
<thead>
<tr>
<th></th>
<th>OLS</th>
<th></th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>Black (log)</td>
<td>−0.048***</td>
<td>0.038**</td>
<td>0.109**</td>
</tr>
<tr>
<td></td>
<td>(0.013)</td>
<td>(0.018)</td>
<td>(0.047)</td>
</tr>
<tr>
<td>Total Population (log)</td>
<td>0.154</td>
<td>−0.108</td>
<td>−0.231</td>
</tr>
<tr>
<td></td>
<td>(0.195)</td>
<td>(0.290)</td>
<td>(0.335)</td>
</tr>
<tr>
<td>Manufacturing (log)</td>
<td>0.195***</td>
<td>0.348*</td>
<td>0.288</td>
</tr>
<tr>
<td></td>
<td>(0.070)</td>
<td>(0.186)</td>
<td>(0.208)</td>
</tr>
<tr>
<td>Blue Collar (log)</td>
<td>−0.287*</td>
<td>−0.337*</td>
<td>−0.190</td>
</tr>
<tr>
<td></td>
<td>(0.158)</td>
<td>(0.181)</td>
<td>(0.195)</td>
</tr>
<tr>
<td>Construction (log)</td>
<td>0.016</td>
<td>0.012</td>
<td>0.007</td>
</tr>
<tr>
<td></td>
<td>(0.102)</td>
<td>(0.131)</td>
<td>(0.137)</td>
</tr>
<tr>
<td>Unemployed (log)</td>
<td>0.097</td>
<td>−0.018</td>
<td>−0.156</td>
</tr>
<tr>
<td></td>
<td>(0.083)</td>
<td>(0.104)</td>
<td>(0.120)</td>
</tr>
<tr>
<td>Union (log)</td>
<td>0.496***</td>
<td>−0.136</td>
<td>−0.188</td>
</tr>
<tr>
<td></td>
<td>(0.046)</td>
<td>(0.163)</td>
<td>(0.207)</td>
</tr>
<tr>
<td>Constant</td>
<td>−2.379</td>
<td>2.445</td>
<td>3.862</td>
</tr>
<tr>
<td></td>
<td>(1.530)</td>
<td>(2.225)</td>
<td>(2.484)</td>
</tr>
</tbody>
</table>

Instrumented ✓

Sample	Full	NE/MW	NE/MW
N | 340 | 173 | 171 |

*p < .1; **p < .05; ***p < .01.
Notes: All regressions use representative i’s vote on the Civil Rights Act as the dependent variable, equaling 1 if they voted in favor of the CRA and 0 if not. Column 1 shows estimates for an OLS model on the entire sample; column 2 is the same, but for districts in the Northeast and Midwest; column 3 provides instrumental variables estimates for the Northeast and Midwest.
Table 4: Migrant Characteristics (Government and Laws)

<table>
<thead>
<tr>
<th>Attitudes Toward Government</th>
<th>OLS (1)</th>
<th>LPM (2)</th>
<th>OLS (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model Type:</td>
<td>OLS</td>
<td>LPM</td>
<td>OLS</td>
</tr>
<tr>
<td>Southern Homestate</td>
<td>−0.397***</td>
<td>−0.038*</td>
<td>−0.037</td>
</tr>
<tr>
<td></td>
<td>(0.099)</td>
<td>(0.022)</td>
<td>(0.038)</td>
</tr>
<tr>
<td>Age</td>
<td>−0.0004</td>
<td>0.003***</td>
<td>−0.0002</td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td>(0.001)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>Total Family Income</td>
<td>0.029*</td>
<td>−0.004</td>
<td>0.015**</td>
</tr>
<tr>
<td></td>
<td>(0.015)</td>
<td>(0.003)</td>
<td>(0.006)</td>
</tr>
<tr>
<td>Years of Schooling</td>
<td>−0.008</td>
<td>0.014***</td>
<td>0.016**</td>
</tr>
<tr>
<td></td>
<td>(0.019)</td>
<td>(0.004)</td>
<td>(0.007)</td>
</tr>
<tr>
<td>Male</td>
<td>−0.096</td>
<td>−0.017</td>
<td>−0.049</td>
</tr>
<tr>
<td></td>
<td>(0.094)</td>
<td>(0.021)</td>
<td>(0.036)</td>
</tr>
<tr>
<td>Constant</td>
<td>5.883***</td>
<td>0.227***</td>
<td>1.647***</td>
</tr>
<tr>
<td></td>
<td>(0.275)</td>
<td>(0.064)</td>
<td>(0.104)</td>
</tr>
<tr>
<td>N</td>
<td>1,911</td>
<td>2,286</td>
<td>2,253</td>
</tr>
<tr>
<td>R²</td>
<td>0.012</td>
<td>0.009</td>
<td>0.010</td>
</tr>
<tr>
<td>Adjusted R²</td>
<td>0.009</td>
<td>0.007</td>
<td>0.008</td>
</tr>
</tbody>
</table>

*p < .1; **p < .05; ***p < .01.

Notes: All dependent variables are a scale ranging from 1 to 3, with higher levels indicating less support toward the respective leader/organization. Southern Homestate is a binary term coded as 1 if the individuals spent the first 10 years of life in a southern state. Column 1 measures trust in government, and higher levels indicate less trust. Column 2 uses the LPM to estimate whether respondents feel that laws and persuasion are the only way to increase Black well-being, coded as 1 if yes and 0 if no. Last, column 3 measures how hard respondents feel that the government is trying to solve problems in their city, and higher levels indicate that the government is perceived as trying less hard.
Table 5: Migrant Characteristics (Leaders and Organizations)

<table>
<thead>
<tr>
<th></th>
<th>MLKJ</th>
<th>RW</th>
<th>SC</th>
<th>RB</th>
<th>NAACP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Southern Homestate</td>
<td>−0.097***</td>
<td>−0.064**</td>
<td>−0.002</td>
<td>−0.029</td>
<td>−0.061***</td>
</tr>
<tr>
<td></td>
<td>(0.023)</td>
<td>(0.027)</td>
<td>(0.038)</td>
<td>(0.037)</td>
<td>(0.020)</td>
</tr>
<tr>
<td>Age</td>
<td>−0.001</td>
<td>−0.004***</td>
<td>0.011***</td>
<td>0.013***</td>
<td>−0.0004</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>Total Family Income</td>
<td>−0.004</td>
<td>0.0002</td>
<td>0.013**</td>
<td>0.012**</td>
<td>−0.004</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.004)</td>
<td>(0.006)</td>
<td>(0.006)</td>
<td>(0.003)</td>
</tr>
<tr>
<td>Years of Schooling</td>
<td>0.006</td>
<td>−0.001</td>
<td>0.021***</td>
<td>0.047***</td>
<td>0.007*</td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td>(0.005)</td>
<td>(0.008)</td>
<td>(0.007)</td>
<td>(0.004)</td>
</tr>
<tr>
<td>Male</td>
<td>0.086***</td>
<td>0.045*</td>
<td>−0.204***</td>
<td>−0.169***</td>
<td>0.038**</td>
</tr>
<tr>
<td></td>
<td>(0.022)</td>
<td>(0.026)</td>
<td>(0.037)</td>
<td>(0.036)</td>
<td>(0.019)</td>
</tr>
<tr>
<td>Constant</td>
<td>1.303***</td>
<td>1.427***</td>
<td>1.692***</td>
<td>1.514***</td>
<td>1.169***</td>
</tr>
<tr>
<td></td>
<td>(0.065)</td>
<td>(0.079)</td>
<td>(0.111)</td>
<td>(0.105)</td>
<td>(0.056)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2,487</td>
<td>1,710</td>
<td>1,764</td>
<td>1,829</td>
<td>2,374</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>R²</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.017</td>
<td>0.017</td>
<td>0.057</td>
<td>0.074</td>
<td>0.009</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Adjusted R²</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.015</td>
<td>0.014</td>
<td>0.054</td>
<td>0.072</td>
<td>0.007</td>
</tr>
</tbody>
</table>

*p < .1; **p < .05; ***p < .01.
Notes: All dependent variables are a scale ranging from 1 to 3, with higher levels indicating less support toward the respective leader/organization. Southern Homestate is a binary term coded as 1 if the individuals spent the first 10 years of life in a southern state. Columns titled “MLKJ”, “RW”, “SC”, “RB”, and “NAACP” represent support for Dr. Martin Luther King Jr., Roy Wilkins, Stokely Carmichael, H. Rap Brown, and the National Association for the Advancement of Colored People, respectively.
Table 6: Migrant Characteristics (Contributions)

<table>
<thead>
<tr>
<th>Contributions</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Model Type:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LPM</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>Southern Homestate</td>
<td>0.008</td>
</tr>
<tr>
<td></td>
<td>(0.019)</td>
</tr>
<tr>
<td>Age</td>
<td>0.010***</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
</tr>
<tr>
<td>Total Family Income</td>
<td>0.027***</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
</tr>
<tr>
<td>Years of Schooling</td>
<td>0.047****</td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
</tr>
<tr>
<td>Male</td>
<td>0.098***</td>
</tr>
<tr>
<td></td>
<td>(0.018)</td>
</tr>
<tr>
<td>Constant</td>
<td>−0.672***</td>
</tr>
<tr>
<td></td>
<td>(0.052)</td>
</tr>
<tr>
<td>N</td>
<td>2,597</td>
</tr>
<tr>
<td>R^2</td>
<td>0.177</td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>0.175</td>
</tr>
</tbody>
</table>

*p < .1; **p < .05; ***p < .01.
Notes: The dependent variable is a dummy equaling 1 if the respondent has contributed money to a Civil Rights organization, and 0 if not. Southern Homestate is a binary term coded as 1 if the individuals spent the first 10 years of life in a southern state.
Figure 1: Railroad Routes

Note: Shown are railroad routes used to create the instrument. These include railroad routes located in the North and Midwest, only. Railroad routes were cleaned and the final set included only those that were named. Map created in QGIS.