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Abstract 

In this paper I investigate the impact of climate on the 

manufacturing sector in low- to medium-income countries. My approach brings 

together economic data from the World Bank Economic Survey and temperature 

data from Berkeley Earth to investigate the impact of unseasonable 

temperatures on three measures of input productivity for the manufacturing 

sector: labor, capital, and total factor productivity (TFP). Results 

suggest that unseasonably hot days reduce value-added labor while 

unseasonably cold days reduce value-added capital. Moreover, both very high 

daily peak temperatures and large variations in daily average temperatures 

in either direction, a plausible outcome from climate change, negatively 

affect all three types of input productivity but to different extents. 

In a 2°C climate change scenario, my results suggest that a less 

stable climate that produces large variations in daily temperatures will 

reduce value-added labor, capital, and TFP by about 3.04, 6.75, and 3.65 

percent, respectively, all other factors held constant.  
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1 Introduction 

In recent times society has become increasingly focused on climate 

change risk and abatement. One particular concern for climate change is its 

potential to increase global inequality and slow poverty eradication 

efforts in less developed countries (Hallegatte et al., 2016). If climate 

change were to undermine economic growth and productivity in poorer 

regions, the ability for less developed countries to bridge the inequality 

gap will only grow. One way to understand these risks is to consider how 

variations in temperature act as exogenous shocks to different factors of 

production – labor, capital, and total factor productivity (see Noy and 

Nualsri (2008) for a discussion). While research on the topic in the 

developing world shows a negative effect on aggregate output from increases 

in average annual temperature anomalies (Dell et al., 2012), whether this 

translates into differential effects between labor, capital, and TFP is 

still uncertain. A wide-reaching study of manufacturers in China found 

evidence that very hot days affect TFP, but the effect on labor and capital 

was less conclusive (Zhang et al., 2018). Meanwhile, other researchers 

found that hot weather could actually reduce the availability of labor over 

the long term by reducing country-wide birth rates (Barreca et al., 2015), 

while a link between climate change and agricultural productivity has also 

been found (Fisher et al., 2012). Climate change is also predicted to 

increase instances of climate related natural disasters (IPCC, 2007), which 

have been shown to have at least short-term negative effects on the macro 

economy (Noy, 2009).  

An important limitation of research between climate change and 

productivity to date is that the vast majority of this research represents 

micro-level studies of specific regions (Sudarshan et al., 2015; Zhang et 

al., 2018), facilities (Chang et al., 2016), or markets (Anenberg et al., 

2017). With the possible exception of Dell et al. (2012), Burke et al. 

(2015) and Kalkuhl & Wenz (2020), I am not aware of any studies which 
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consider the effect of climate change on aggregate productivity across 

large parts of the world, no studies which consider climate change on the 

different types of firm-level input productivity across the developing 

world, and no studies which look at the effect of climate on value-added 

productivity in a large-scale macroeconomic context. 

In this paper I address these gaps in the literature by being the 

first to examine the effect of increasing variation in daily temperature 

averages on three types of firm-level input productivity - labor, capital 

and total factor productivity (TFP) – across low and medium income 

countries. I accomplish this by combining longitudinal temperature data 

from Berkeley Earth (2019) with cross-sectional firm level productivity 

data from the World Bank Enterprise Survey (WBES) (The World Bank, 2020) to 

create a pooled cross-sectional dataset of about 29,000 firms from 114 

countries. In order to account for possible correlation in the error terms 

between productivity measures, I estimate a system of equations using 

Seemingly Unrelated Regression (Zellner, 1962). To address potential 

endogeneity bias in the data, the empirical strategy includes year and 

industry fixed effects by ISIC code together with a series of firm level 

controls. I also include a set of regional dummies based on World Bank 

regions, controls for longitude, and a region by longitude control to 

account for geographic heterogeneity. Therefore, the identification comes 

from within industry variation and within a geographic cross-section 

instead of between different regions and industries. Finally, as the WBES 

uses a stratified random sample in their survey design, this paper uses 

related strata information in constructing standard errors.  

Results from my empirical analysis proceed along several dimensions. 

First, I consider productivity in both sales/output and value-added terms. 

Value-added productivity is given emphasis in my results as it is a better 

measure of local climatic and pollution conditions and their effect on firm 

productivity. Second, while climate change is predicted to produce warmer 



4 

 

weather, it is also predicted to produce a less stable climate (Melillo et 

al., 2014). Thus, my empirical strategy includes different models with 

different independent weather variables to account for both possibilities. 

For my model focused on unstable weather, each additional day per fiscal 

year at least 4°C above or below long-term average monthly temperature 

trends reduces value-added labor by 0.11 percent (p<0.05), value-added 

capital by 0.23 percent (p<0.05) and TFP by 0.13 percent (p<0.05). To 

investigate the effect of warmer weather on productivity, I make use of two 

separate but similar models. The first uses two key independent variables: 

one for the count of days with an average daily temperature at least 4°C 

above long term trends and another for the count of days at least 4°C below 

long term trends. Compared to the base category of a day within 2°C of the 

average, this model predicts that each additional unseasonably warm day per 

fiscal year adversely effects value-added labor (-0.16 percent, p<0.05), 

while each additional day of unseasonable cold reduces value-added capital 

(-0.59 percent, p<0.01). My final model considers the effect of daily 

maximum temperatures on productivity. Here the independent variable is the 

count of days per fiscal year where the daily maximum temperature is at 

least 4°C above long-term trend. Results from this model suggest that each 

day with an unusually high peak temperature reduces annual value-added 

labor by 0.13 percent (p<0.05), capital by 0.19 percent (p=.128), and TFP 

by 0.18 percent (p<0.05). These results are summarized in Table 1. 

One way of understanding the economic costs of climate change is to 

consider how a firm with average productivity would be effected if global 

temperatures increased by 2°C. I use 2°C as it represents the upper bound 

goal for climate change from the Paris Agreement (United Nations, 2015). 

Under this 2°C scenario, an increased frequency of very warm days is 

predicted to reduce value-added labor productivity by 8.43 percent. This is 

in line with estimates by the IPCC (1996), which predict that the frequency 

of very warm days will double as temperatures increase by 2-3°C. I also 
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consider the effect of large variations in temperature due to a less stable 

climate. Here, the prediction is that under a 2°C climate change scenario, 

climate change induced instability in weather will reduce value-added 

labor, capital, and TFP by 3.04, 6.75, and 3.65 percent, respectively. 

Losses of this scale have several important implications for the 

developing world. First, if climate change primarily manifests as warmer 

weather, firms will have an incentive to prefer capital inputs. In 

contrast, if climate change primarily leads to more extreme temperature 

days, including heat waves and severe winter storms (Melillo et al., 2014), 

all forms of productivity will suffer, but capital most of all. This would 

lead to a greater preference for labor inputs. Regardless of which effect 

dominates the relationship between climate change and productivity, overall 

manufacturing efficiency in low-to-medium income economies will be 

adversely affected by climate change. The result will be lower economic 

output for a given level of inputs.  

2 Background 

Research on the impact of temperature on workplaces has only recently 

gained attention, potentially due to rising concerns around climate change 

and long-term economic growth. Early research in this field tended to 

concentrate on agricultural settings and generally found an economically 

significant negative effect between increased temperature and farm 

productivity (Deschênes & Greenstone, 2012; Fisher et al., 2012; Schlenker 

& Roberts, 2009). However, a growing body of recent literature shows that 

extreme temperature and severe weather patterns negatively impact aggregate 

productivity, and the productivity of specific sectors. For example, using 

data from 12 countries, Dell et al. (2009) found that variation in 

temperature can partially explain both cross-country and within-country 

variation in income, with about half the short-term negative effects offset 

with long-term adaptation. Likewise, research on manufacturing productivity 
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in China indicates that an increase in days above 90°F reduces total factor 

productivity among Chinese firms. Here, the authors suggest that unfettered 

climate change could reduce Chinese manufacturing by 12 percent by the 

middle of this century (Zhang et al., 2018). Finally, data from the auto 

industry in the United States suggests that an increases in the count of 

days above 90°F reduced auto production by about 1.5 percent (Cachon et 

al., 2012). Despite the evidence suggesting extreme temperatures negatively 

affect labor productivity, the level of heat required to induce declines in 

labor productivity is less clear, as is why those declines occur. For 

example, while Niemala et al. (2002) found that increasing temperature by 

2.5°C reduced call center productivity by 5-7 percent, Lan et al. (2011) 

showed an increase of 8°C was required to reduce worker neurological test 

scores designed to proxy worker productivity. Relatedly, Cai et al. (2016) 

documented that worker productivity displayed an inverted U-shape with 

temperature: piece-rate productivity among workers at the factory they 

investigated was highest when outside temperatures were between 76-79°F, 

decreasing by 11 percent when temperatures were below 60°F and by 6.7 

percent when temperatures were above 95°F. This effect was limited to non-

local laborers, with long term residents near the factory unaffected by 

temperature. This accords with the conclusions drawn by Zhang et al. 

(2018), who similarly found an inverted U-shape in TFP. Overall, their key 

argument is that absenteeism did not explain drops in output, but rather it 

was thermal stress inducing production losses. Meanwhile, Graff Zivin et 

al. (2018) support a link between weather and human capital productivity. 

Here, using NLSY79 data, they found that high ambient temperature (above 

78.8°F) reduced results on math test scores in a statistically significant 

manner. This suggested that the mechanism for temperature affecting labor 

productivity is likely through reductions in cognitive performance. 

However, they argue this effect largely dissipates over time due to long 

run compensatory factors.  
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Conversely, the effect of adverse temperatures on capital 

productivity is less well known. There is reason to believe thermal stress 

increases breakdowns and the maintenance needs of machinery (Mortier et 

al., 1992). Plausibly, extreme weather will also increase energy and 

cooling costs making capital more expensive to operate. Power outages 

caused by extreme weather events, a particularly insidious issue in the 

developing world (Gaylord & Hancock, 2013), would also reduce capital 

productivity. Within a conceptual framework of productivity and output, 

Cole et al. (2005) suggest that if pollution affects labor productivity, 

then firms would switch to greater automation. The same could be said for 

temperature and labor, where reductions in labor productivity lead to 

greater capital investment in automation. The extent firms automate labor 

tasks would likely vary by industrial sector, as the impact of extreme 

weather and climate change may vary by sector. This is also true for firm-

level substitutions between capital and human capital, where the investment 

in one may increase if the other is impaired by pollution (or persistent, 

extreme temperature) (Bovenberg & Smulders, 1995). 

3 Data 

To investigate the effect of temperature on firm-level productivity, 

I combine data from several sources. Enterprise data is from the World Bank 

Enterprise Survey (The World Bank, 2020), which includes harmonized 

estimates of capital, labor, and total factor productivity for firms across 

114 different low- and middle-income countries. To simplify total factor 

productivity, I take it to represent the contribution to output not 

explained by capital or labor. At the firm level, this is roughly 

equivalent to technical progress (The World Bank, 2000). Temperature data 

is from Berkeley Earth’s gridded daily temperature anomaly dataset 

(Berkeley Earth, 2019). This data was only recently made available and is 

classed as experimental. The following sections discuss each data source in 

detail.  
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World Bank Enterprise Survey 

I use firm level data from the World Bank Enterprise Survey (WBES) 

for surveys conducted between 2006 and 2017 for my productivity and 

economic indicators. This represents the earliest period from when the 

World Bank’s Enterprise Analysis Unit first employed their “Global 

Methodology” to the survey, which makes survey observations directly 

comparable over time (Francis & Karalashvili, 2017). To conduct its survey, 

the World Bank selects a representative sample of firms based on a 

stratified random sampling methodology that groups firms by size, 

geographic location, and industry. The survey has a different set of 

questions depending on whether a firm is a manufacturer or service 

provider. As a complete set of questions on productivity are only asked in 

the manufacturing module, I limit my analysis to firms who are in the 

manufacturing sector as defined by ISIC codes 15-37.  

The most important economic indicator derived from the World Bank 

survey is an estimate of total factor productivity. While a full 

methodological description is available from the World Bank website1 

(2017), for this paper, it is important to recognize that the World Bank 

uses two methods for calculating TFP: an output-based model (VKLM), and a 

value-added model (VAKL). Together with these estimates of TFP, I also use 

the WBES to derive both output and value-added versions of labor (L) and 

capital (K) productivity. In output-based terms labor productivity 

represents sales per total cost of labor. This can be expressed as: 

𝐿(𝑜𝑢𝑡)𝑖 =
𝑆𝑎𝑙𝑒𝑠𝑖

𝐿𝑎𝑏𝑜𝑟𝐶𝑜𝑠𝑡𝑠𝑖

(1) 

Meanwhile, capital productivity represents sales per replacement cost of 

machinery, vehicles and equipment and can be expressed as: 

 
1 Specifically, see: 

https://login.enterprisesurveys.org/content/sites/financeandprivatesector/e

n/library/combineddata.html Note: requires (free) login credentials 

 

https://login.enterprisesurveys.org/content/sites/financeandprivatesector/en/library/combineddata.html
https://login.enterprisesurveys.org/content/sites/financeandprivatesector/en/library/combineddata.html
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𝐾(𝑜𝑢𝑡)𝑖 =
𝑆𝑎𝑙𝑒𝑠𝑖

𝐶𝑎𝑝𝑖𝑡𝑎𝑙𝑖

(2) 

where all values are in 2009 USD terms. The key difference between this 

output-based model and the value-added (VA) model is the use of cost-of-

goods sold2 (COGS) in calculating value-add. Thus, value-added labor 

productivity for firm 𝑖 is: 

𝐿(𝑉𝐴)𝑖 =
(𝑆𝑎𝑙𝑒𝑠𝑖 − 𝐶𝑂𝐺𝑆𝑖)

𝐿𝑎𝑏𝑜𝑟𝐶𝑜𝑠𝑡𝑖

(3) 

 

and for capital (K): 

𝐾(𝑉𝐴)𝑖 =
(𝑆𝑎𝑙𝑒𝑠𝑖 − 𝐶𝑂𝐺𝑆𝑖)

𝐶𝑎𝑝𝑖𝑡𝑎𝑙𝑖

(4) 

where all values are in 2009 USD terms. As part of the seemingly unrelated 

regression, 𝐿(𝑉𝐴)𝑖, 𝐾(𝑉𝐴)𝑖 and TFP estimates from the VAKL model are used 

together when analyzing the effect of weather on value-added productivity, 

while 𝐿(𝑜𝑢𝑡)𝑖, 𝐾(𝑜𝑢𝑡)𝑖 and TFP estimates from the YKLM model are used when 

examining output-based productivity. During the calculation of TFP, the 

World Bank removes outliers three standard deviations from the mean on each 

key economic indicator. For consistency, I also set these observations to 

missing. Countries represented in the data are shown in Figure 1, with 

darker colors representing a greater proportion of the total dataset. What 

is clear is that countries generally regarded as highly developed are 

excluded from the survey. This includes western Europe, Scandinavia, the 

United States, Canada, Japan, and Australia. Thus, my analysis is 

particularly relevant for low and middle-income economies. Firms from India 

are the largest group by country and represent 8.66 percent of all firms 

 
2 In the World Bank survey, terminology used is the accounting cost-of-

goods sold. This is synonymous with cost of inputs. 
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used in my analysis. Meanwhile, the largest number of firms by World Bank 

region is from Latin America which make up 34.2 percent of all respondents.  

 

Figure 1 - Countries in Dataset (Proportion of Firms in Total Dataset) 

 

Summary statistics are shown in Table 2. On average, yearly output-

based capital productivity per firm was $16.12 a year (standard deviation 

(SD) of $56.28) per dollar of capital employed, while average value-added 

capital productivity was $9.46 (SD of $33.00). Average output per dollar 

cost of labor per year was $11.31 (SD $20.68), while the average value-

added productivity per labor dollar per year was $6.37 (SD $12.18). 

Berkeley Earth Temperature Data 

Data on temperature variation is from the Berkeley Earth project’s 

gridded daily dataset (Berkeley Earth, 2019) for years 2005 through 2017. 

Each data point is recorded at the 1° latitude by 1° longitude level, 

centered around 0.5°, and represents the daily surface air temperature 

anomaly from the mean monthly temperature3 for that grid reference. 

Berkeley Earth uses a specific program, known as Berkeley Average, to 

 
3 With the mean being calculated from temperature readings over the period 

from January 1951 to December 1980. 
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calculate mean temperatures from 14 databases and 14.4 million temperature 

observations across over 44,000 sites (Rohde, A. et al., 2013). One benefit 

of using this dataset is that it provides very little error in the 

calculation of average temperature compared to its peers, especially during 

the timeframe used in this paper where the average annual error is less 

than 0.1°C (Rohde, 2013). To match firm location to temperature data, the 

central co-ordinate for each WBES city or region was selected, rounded to 

the nearest 0.5° on both latitude and longitude, and then matched to the 

Berkeley Earth dataset4. In total, 4,758 Berkeley Earth temperature data 

points were matched for each location. Finally, this data is sorted into 

bins as described in Data Matching Principles below. 

 Summary statistics for the Berkeley Earth dataset are shown in Table 

3. Across the entire dataset, locations experienced 287.9 days within 2°C 

of the locational monthly mean on average. Europe and Central Asia had the 

highest level of variation, with an average of 157.6 days of normal 

temperatures, and Africa had the least amount of variation with 319.4 days 

per year lying within 2°C of the monthly mean. Across all regions, 

locations had 19.1 days of extreme temperature at least 4°C from normal per 

annum on average. South Asia was the lowest with just 5.5 days, while 

Europe and Central Asia were the highest with 93 days per annum.  

4 Data Matching Principles 

One important consideration with weather data is that there may be a 

non-linear relationship between temperature and the outcome of interest, 

especially when looking at extreme temperature values (Auffhammer et al., 

2013; Burke et al., 2015). To control for this non-linearity and to 

estimate the effect of daily temperature readings on annual economic 

 
4 In metric terms, 0.01° longitude is about 1.1km in length at the equator 

and about 0.46km at 67° north and south. In this dataset, regions/cities 

range in distance from the equator to about 39°S and 67°N and thus the 

city/regional center is at most no more than 55km from the temperature 

reading. 
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statistics, I use a strategy common to this type of environmental-economic 

analysis where I discretize the distribution of daily data into bins 

representing a given temperature range over the chosen year (Deschênes & 

Greenstone, 2011; Zhang et al., 2018). This method captures any non-linear 

effects within the ranges for each bin to allow us to look at the important 

aggregate effect of large variations in weather on productivity. This 

method also captures U-shaped non-linearity between the bins as documented 

by Cai et al (2016). For this paper, I use five ranges: < -4°C below the 

city/region temperature mean, representing a much colder than normal day; -

4°C to -2°, representing a mild day; -2°C to 2°C, representing an average 

day; 2°C to 4°C, representing a slightly warm day; and greater than 4°C to 

represent a hot day. To populate the bins, I take the fiscal year end for 

the firm’s country as defined in the CIA World Factbook (2016) and count 

back exactly one year. One reason to use five bins is to provide a clear 

break (or bridge) between my key variables of interest (the > ±4°C bins) 

and the base category (the count of days within 2°C of the regional 

average). The expectation is that while very marginal changes in 

temperature, such as going from 1.9°C to 2.1°C or from 3.9°C to 4.1°C, are 

unlikely to be discernable to workers or machinery, a jump in temperature 

of at least 2°C is discernable. As the focus of my analysis is on the 

aggregate effect of highly abnormal temperatures on firm-level input 

productivity, I concentrate my discussion on the bins representing much 

warmer or colder days compared to average, rather than on the bridging bins 

which represent mild changes in temperature. This helps resolve many of the 

issues of discretizing (or categorizing) a continuous variable (Altman 

2014). 

Another benefit of starting with five bins is because although 

climate change is predicted to increase global temperatures, it is also 

likely to lead to more extreme events, including heat waves and winter 

storms (Melillo et al., 2014). To investigate this latter effect in 
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aggregate, I include a complimentary analysis where the key independent 

variable combines the > 4°C and < -4°C bins to represent days with an 

average temperature anomaly at least 4°C from the mean, whether positive or 

negative, examined against the control bin of -2°C to 2°C days. This 

analysis is termed the Extreme Weather Model in my results section. I also 

investigate variations in daily maximums from their monthly means using a 

similar methodological approach described in the preceding paragraph. This 

is termed the Daily Max Model. 

5 Conceptual Framework and Empirical Methodology 

To conceptualize the role of inputs in producing firm-level output, I 

use a simple Cobb-Douglas production function that includes output (Y), 

labor (L), capital (K), and total factor productivity (TFP). This is based 

on work by Francis & Karalashvili (2017), Zhang et al (2018), Sorenson & 

Whitta-Jacobsen (2010), and Cobb & Douglas (1928). As output is a function 

of inputs, I have: 

𝑌 = 𝑇𝐹𝑃(𝐿)𝜎𝐿(𝐾)𝜎𝐾 (5) 

Output elasticities are given for labor and capital as 𝜎𝐿 and 𝜎𝐾 

respectively. Taking the log of both sides yields: 

𝐿𝑛(𝑌) = ln(TFP) + 𝜎𝐿𝐿𝑛(𝐿) + 𝜎𝐾𝐿𝑛(𝐾) (6) 

Since weather conditions have the potential to affect the return to 

each component of output, changes in component efficiency may result in 

firms reallocating factor inputs in order maintain their desired level of 

output. The goal of the empirical analysis is to test how each log input is 

affected, and whether reallocation occurs as a result.  

To assess the effect of environmental conditions on L, K, and TFP, I 

use a Seemingly Unrelated Regression (SURE) (Zellner, 1962). In choosing a 

SURE model, the intention is to account for any possible cross correlation 

in error-terms between the different types of input productivity. This 
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maximizes the efficiency of my estimators even if OLS estimates are 

otherwise consistent (Martin & Smith, 2005). Note that using the SURE 

method only produces slightly different results compared to OLS estimators, 

with no difference in interpretation between OLS and SURE estimates. For 

this reason, only SURE estimates are presented.  

The empirical aim is to estimate a system of equations, whether in 

OLS or SURE, of the form: 

𝑙𝑛(𝑝𝑟𝑜𝑑𝑚)𝑖𝑡 = 𝛽0
𝑚 + β1

𝑚𝑡𝑒𝑚𝑝𝑖𝑡 + β2
𝑚𝑟𝑒𝑔𝑖𝑜𝑛𝑖 +  β3

𝑚𝑙𝑎𝑡𝑖 +  β4
𝑚(𝑟𝑒𝑔𝑖𝑜𝑛 ∗ 𝑙𝑎𝑡)𝑖 + β5−𝑛

𝑚 𝑓𝑖𝑟𝑚𝑖

+𝛾𝑡 + 𝛿𝑗 + ϵ𝑖𝑡
𝑚 (7)

 

where m represents the productivity measure of interest (L, K, TFP); 𝑖 

represents each firm; temp is a vector of bins representing count of days 

in the bin for the relevant year; t represents fiscal year for firm 𝑖; firm 

is a vector of other firm specific controls; and 𝜖𝑖𝑡
𝑚 represents the 

idiosyncratic error term for firm 𝑖 in year t for productivity measure m. 

The full empirical model includes a set of control variables, namely: a 

categorical variable representing whether the firm is small, medium, or 

large to account for differences in productivity between firms of varying 

size and opportunity; a dummy to represent whether a firm is in a low 

income country; six regional controls reconciling to the World Bank regions 

(region); the central latitude for the city/region where the firm is 

located (lat); and an interactive between region and latitude (region*lat). 

The region and latitude controls account for regional differences in 

productivity and environmental conditions, and follow guidance from Fisher 

et al. (2012) on the optimal level of geographic control for 

environmental/temperature controls. The authors of Fisher at al. (2012) 

argue that using a local fixed effects model, such as at the city/local 

region level, would in effect capture almost all the variation in 

temperature. Using a cross section of larger regions and latitudes balances 

the risk of over specifying the model with discerning important 

relationships between temperature and productivity. The model also includes 
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both industry (𝛿𝑗) and year (𝛾𝑡) fixed effects. Industry is at the two-digit 

ISIC level. These control for possible endogeneity bias at the industry and 

year levels that could affect productivity and the environmental variables 

of interest. In particular, the industry effect controls for the likelihood 

that firms across different industries will likely face different levels of 

productivity and environmental regulations, and that they will likely have 

different preferences to location. Meanwhile, the year fixed effect 

controls for global time trends in temperature, productivity, and pollution 

control. Summary statistics of the relevant variables are shown in Table 2 

through Table 4. 

Since many of the variables used in this analysis are categorical or 

dummy variables, base categories are selected for each to serve as a 

standard of comparison within the model. For the temperature variable, the 

key base category is the count of days in the previous fiscal year where 

the daily temperature was within 2°C of the average for that region for 

that month. This bin is excluded from the model with the remaining β1 

estimators interpreted in comparison to this reference group. Finally, 

since the World Bank uses a stratified random sample in their survey 

design, I cluster standard errors at the strata level per guidance in 

Abadie et al.(2017). The strata include firm size, geographic location, and 

industry. While it varies by model, typically this produces about 6,500 

clusters. 

6 Results 

My empirical results include estimates for the effect of unseasonable 

temperature on both output-based and value-added L, K, and TFP. In the case 

of the output-based factors of production, the variables represent each 

factor’s contribution to firm sales. In comparison, the value-added factors 

of production represent each factor’s contribution to gross profit. As 

discussed previously, greater emphasis is given to results for the value-
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added variables. This is because the value-added measures more accurately 

represent the effect of localized climatic conditions on firm activity, 

while output based measures include climatic conditions imported from 

elsewhere. All productivity measures are expressed in natural logs and have 

been multiplied by 100 for easier interpretation.  

Three competing models, each examining a different set of key 

independent temperature variables, are examined. Controls are consistent 

across all models. The first model, the Extreme Weather Model, uses as its 

key independent variable the count of days in a fiscal year with an average 

daily temperature at least 4°C above or below the long-term monthly mean. 

The second, the Hot and Cold Weather Model, includes all temperature bins 

as separate independent variables. However, my interpretation of this model 

focuses on the two most extreme temperature bins: the number of days with 

an average temperature at least 4°C above the long-term mean, and the 

number of days with an average temperature at least 4°C below the long-term 

mean. The third model, dubbed the Daily Max Model, replicates the second 

model, but with bins built based on daily maximum temperatures instead of 

daily average temperatures. In each SURE model the count of days within 2°C 

of the mean for that observation/year is dropped to act as the control 

group. As such, all results are compared to the number of days in a year 

where the firm experienced temperature in line with the long-term regional 

temperature average, but with an allowance around 2°C. Table 1 provides a 

summary of the key relationships between weather and labor, capital and TFP 

productivity for the value-added models. 

  



17 

 

Table 1 Summary of Key Results 

6.1 Labor Productivity and the Environment 

There is a clear negative and statistically significant association 

between value-added labor productivity and all three measures of extreme 

heat and unstable weather. In the value-added Hot & Cold Model, each 

additional day with a temperature at least 4°C above the long-term monthly 

average is predicted to reduce labor productivity by 0.159 percent (p<0.05) 

(Table 6, column 4). As the average level of value-add per dollar spent on 

labor across all regions and years is $6.37, this represents a marginal 

reduction of about 1.01 cents of value-added labor per dollar spent. 

Similarly, in the value-added Daily Max Model (Table 8, column 4), a 

negative and statistically significant relationship is also present between 

labor productivity and each day of abnormally high daily maximum 

temperatures. This model suggests that each additional day with a high at 

least 4°C above the average long-term monthly maximum reduces annual labor 

productivity by 0.129 percent (p<0.05). This represents a loss of 0.82 

cents per dollar spent on labor at the mean. Finally, results from the 

value-added Extreme Weather Model are in Table 7, column 4. Point estimates 

  

Seemingly Unrelated Regression  

- Value Added - 

 Daily Average Temperature 

 Labor Capital TFP 

Extreme Weather Model 
-0.105** -0.233** -0.126** 

(0.043) (0.102) (0.052) 

     

Hot & Cold Model: > +4°C days 
-0.159** 0.09 -0.118 

(0.072) (0.079) (0.088) 

     

Hot & Cold Model: < -4°C Days 
-0.02 -0.587*** -0.139 

(0.095) (0.217) (0.112) 

     
  Daily Maximum Temperatures 

  Labor Capital TFP 

Daily Max Model 
-0.129** -0.185 -0.178** 

(0.065) (0.121) (0.073) 

     

Full Set of Controls Yes Yes Yes 
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on the extreme weather bin predict a reduction in annual value-added labor 

productivity of 0.105 percent (p<0.05) (or 0.66 cents per dollar) for each 

day at least 4°C away from the mean monthly temperature. Point estimates 

and direction of effect in all three models are robust to model 

specification. 

Compared to the consistent and negative effect of extremely hot days 

on value-added labor productivity, the overall effect of temperature on 

output-based labor productivity is mixed. First, no statistically 

significant result is found in the Hot & Cold Model (Table 7, column 1). 

Second, smaller but statistically significant results are seen on the count 

of days of extreme weather and output-based labor productivity in the 

Extreme Weather Model (Table 6, column 1), although this result is less 

robust to model specification. Third, there is a statistically significant 

relationship (-.142 percent, p<0.05) between each additional day of very 

high daily maximum temperatures and output-based labor productivity in the 

Daily Max Model (Table 8, column 1). This effect has similar economic 

significance compared to the value-added labor estimators, with the point 

estimate representing a loss of 1.6 cents worth of output per dollar spent 

at the mean of $11.31. 

The consistent negative association between extreme temperature days 

and value-added labor productivity suggests that labor may become less 

efficient in the face of higher positive variation in daily temperatures. 

As the estimates on output-based labor productivity are less consistent, 

this suggests that variation in temperature predominantly creates 

inefficiency in using inputs rather than creating outputs (Cai et al., 

2016). This is potentially a product of value-add being a better measure of 

local productivity and local climatic conditions affecting productivity.  

6.2 Capital Productivity and the Environment 

Capital productivity offers an interesting contrast to labor. 

Beginning with value-added capital productivity, the value-added Hot & Cold 
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Model shows no clear relationship between warm weather and capital (Table 

6, column 5). On the contrary, there is a persistent negative and 

statistically significant relationship between each additional day of 

unseasonably cold average temperatures and capital productivity across the 

different model specifications, including in the fully specified model 

shown in Table 6. Here, each additional day at least 4°C below the long-

term trend is predicted to reduce value-added capital productivity by 0.587 

percent (p<0.01). Given the average level of value-added capital per dollar 

invested across all regions and years is $9.46, this represents an average 

loss of capital efficiency of about 5.6 cents per dollar of investment for 

each abnormally cold day. The value-added version of the Extreme Weather 

Model (Table 7) follows a similar trend. Each additional day at least 4°C 

above or below the long-term mean is predicted to reduce value-added 

capital productivity by 0.233 percent (p<0.05). The value-added Daily Max 

model offers an imprecise estimate of the effect of unusually high daily 

maximum temperatures on capital. First, the coefficient on the bin 

representing warm-but-not-hot days (the number of days with max temp 2 to 

4° C above the mean) is positive (0.31 percent) and statistically 

significant (p<0.01) (Table 8, column 5). Second, despite a higher level of 

statistical uncertainly (p=0.128) compared to the classical test of 

significance (p<0.10), the point estimate (-0.185 percent) on the >4°C bin 

suggests that there may be a negative relationship between very high daily 

maximum temperatures and capital productivity. This negative effect accords 

with the similarly negative effects high daily maximum temperatures have on 

both labor productivity (discussed in the section above) and TFP (discussed 

below). Although I am loath to draw any strong inference from the co-

efficient on the bridging bins, this does provide some evidence that while 

slightly warmer peak temperatures may improve capital efficiency, unusually 

large peak daily temperatures reduce capital productivity.  
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With respects to my output-based models, a negative relationship 

between colder than normal weather and capital efficiency is also present. 

In the Hot & Cold Model, the point estimate for a much colder than normal 

average day is -0.513 percent (p<0.01) (Table 6, column 2). Similarly, the 

point estimate on the >±4°C bin in my output-based Extreme Weather Model 

predicts that each day at least 4°C away from long-term monthly trends 

reduces output-based capital productivity by -0.19 percent (p<0.05) (Table 

7, column 2).  

A key finding is that while there is a negative relationship between 

both value-added labor and capital and extreme temperature, labor 

productivity is particularly affected by unseasonable warmth, while capital 

productivity is affected more by unseasonable cold. One plausible 

explanation is that more capital is needed to achieve the same level of 

output during cold weather. This could potentially be due to expensive 

investments in insulation, heating, or new equipment that can withstand 

lower temperatures.  

6.3 TFP and the Environment 

No statistically significant relationship is seen between output-

based TFP and temperature in any of my output-based models. For value-added 

TFP, there is no statistically significant association between either very 

warm or very cold average daily temperatures and value-added TFP in the Hot 

& Cold Model (Table 6, column 6). There is, however, a negative and 

statistically significant relationship between the joint count of both very 

warm and very cold days and TFP in the Extreme Weather Model(Table 7, 

column 6). This effect is robust to model specification. The point estimate 

on the model with a full set of controls suggests that each additional day 

of highly unseasonal average temperatures reduces annual TFP by 0.126 

percent (p<0.05). There is also a negative association between days of 

unseasonably high daily maximum temperatures and value-added TFP. In the 
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Daily Max Model (Table 8), the point estimate implies a .178 percent 

(p<0.05) reduction in TFP each day the daily high is at least 4°C above 

trend.  

6.4 Discussion of Temperature and Productivity 

The analysis above depicts a complex relationship between temperature 

and input productivity. With respects to the effect of a day with an 

average temperature at least 4° warmer than normal, my Hot & Cold Model 

shows a clear negative effect on value-added labor productivity. This 

negative relationship also holds in the Daily Max Model for each day where 

the daily peak temperature is at least 4°C above normal. By contrast, while 

there is no evidence TFP is significantly affected by unseasonably high 

average temperatures, like labor it is negatively affected by very high 

daily maximums. Value-added capital productivity offers a slightly more 

complex outcome. Here, value-added capital productivity is less efficient 

on days when the average temperature is at least 4°C below trend. Capital 

may also be less efficient on days where the daily high is at least 4°C 

above trend. Although the point estimate on this latter statistic is 

somewhat imprecise, when taken together with TFP and labor it acts as 

evidence that daily highs affect all three types of input productivity. 

This makes intuitive sense: most manufacturers are active during the day 

when temperatures are likely to be at their peak, with peak temperatures 

likely closely connected to thermal stress (Zhang et al., 2018) and the 

probability of a blackout (Gaylord & Hancock, 2013). The evidence from my 

models suggest this negative effect is more consistent on labor 

productivity and TFP compared to capital. 

One constant across the analysis is the strong relationship between 

the cumulative count of extreme temperature days and all types of value-

added input productivity. This is shown by the Extreme Weather Model where 

the highest negative co-efficient is on value-added capital (-0.233, 
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p<0.05), followed by TFP (-0.126, p<0.05), and then labor (-0.105, p<0.05). 

This implies that each additional day of very warm or cold temperatures 

reduces the efficiency of all inputs, but capital most of all. This could 

be due to reduced effectiveness of machinery or the need for more machinery 

to compensate for weather effects on manufacturing, among other potential 

causes. It is also plausible that firms may be able to reduce labor costs 

on days affected by extreme weather. While this would result in lower 

employee costs on such days, the fixed nature of capital outlays gives 

firms fewer options to reduce their stock of property, plant, and 

equipment. If firms were engaged in this sort of compensatory effort, it 

would at least partially explain why value-add per unit cost of labor is 

less affected by extreme weather events than value-added capital. 

Finally, one take away from my results is that compared to output-

based productivity, which includes inputs affected by environmental 

conditions occurring elsewhere, value-add appears to be a better predictor 

of how environmental conditions affect firm-level productivity. I would 

suggest this is because value-add occurs locally and thus better captures 

the impact of local variation in production conditions rather than 

conditions imported from elsewhere. Thus, although results from the output-

based model are mixed, the evidence from the value-added model that highly 

adverse temperatures affect firm-level input productivity is compelling. 

6.5 Climate Change and Input Productivity 

Although there is clear evidence climate change will produce days 

that are much warmer than long term trends (IPCC, 2007) and a less stable 

climate generally (Melillo et al., 2014), the exact number of days any one 

region will experience 4°C above or below the long-term average is not 

clear. As this is the key outcome of interest for my analysis, this makes 

it difficult to precisely calculate the effect of climate change on 

productivity using just my point estimates. As a compromise, I use results 
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from my models and average trends in global temperatures to extrapolate 

potential changes in input productivity for the “average” firm from the 

countries in the data. This basic projection relies on point estimates from 

the value-added SURE models, linear projections of temperature5, and serves 

more to place our global future in perspective rather than to predict the 

future for any one region. To that end, I focus on the effect of a 2°C rise 

in average annual global temperatures. This is done for two reasons. First, 

2°C represents the upper bound for climate change from the Paris Agreement 

(United Nations, 2015). Second, there is evidence that a doubling of CO2 

emissions translates to a 50/50 chance of a 2°C rise in average 

temperatures by the year 2100 (Andronova & Schlesinger, 2001). Thus, there 

is both a political and a scientific reason to be interested in a 2°C 

increase in global average temperatures. A summary of the calculations and 

results is shown in Table 9. 

The projections proceed as follows. First, according to the Berkeley 

Earth dataset, global temperatures were about 0.15°C higher on average over 

the six years from 2012 to 2017 compared to the period 2005 to 20106. This 

represents the first and last six years in my dataset where I have a full 

set of temperature anomaly values for each region. Second, for the period 

2005 to 2010, the regions in my dataset averaged about 30.67 days per annum 

 
5 While there is some evidence of non-linear trends in my empirical models 

(such as where the 2°-4°C temperature buckets have a statistically 

significant co-efficient), I have chosen not to include them in my climate 

change analysis. This is done as these categories were designed to act as 

separation variables to split my base category from the true variables of 

interest (the extreme weather variables). Thus, they are likely to include 

daily temperature readings very close to those in the base and key 

independent variable categories (for example, a 2.1°C versus 1.9°C day). 

This may cause unexpected issues (Altman, 2014). Also, if they are 

included, they actually increase the estimated effect of climate change on 

input productivity. Thus, I stick to more conservative but more 

statistically sound estimates here. 
6 Author’s calculation based on global average temperature anomalies 

available at 

http://berkeleyearth.lbl.gov/auto/Global/Complete_TAVG_summary.txt with the 

average anomaly over 2012-2017 of about 1.12°C versus 0.97°C over 2005-

2010. 

http://berkeleyearth.lbl.gov/auto/Global/Complete_TAVG_summary.txt
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with average daily temperatures at least 4°C above the long-term mean7. For 

the period between 2012 and 2017 this was 34.64 days, an increase of about 

3.97. Third, extrapolating these figures out to a 2°C climate change goal 

would result in the firms covered in the dataset experiencing an average of 

66.24 days with average daily temperatures at least 4°C per annum above 

historical trends. Using the statistically significant point estimates from 

Table 6, this translates to a predicted loss of 8.43 percent of value-added 

labor productivity, or about 54 cents per dollar invested at the margin8, 

and a 6.25 percent decline in value-added TFP.  

Using this same methodology but for the Extreme Weather Model in 

Table 7, firms experienced an average of 47.08 days of extreme weather per 

year between 2005 and 2010. For the period 2012 to 2017, the same firms 

would have experienced 49.25 days on average, an increase of about 2.17 

days per annum. With the 0.15°C increase in global temperatures for the 

same period, this suggests that firms in the data would experience about 

36.21 extreme weather days per year if yearly average temperatures rose by 

2°C, the upper bound of the UN climate change goal. 36.21 days of extreme 

weather per year translates into a predicted loss of 3.73 percent of value-

added labor per dollar or about 23.76 cents per dollar9, a loss of value-

added capital of 7.49 percent or about 70.9 cents per dollar of capital 

invested at the margin10, and a loss of value-added TFP of about 5.39 

percent. 

Even if there are compensatory effects to reduce the impact of 

climate change on productivity such that these figures overstate the true 

relationship, the data available shows that a 2°C increase in global 

 
7 Note that this number varies from the firm-level average exposure as 

detailed in Table 3 for two reasons. First, the number presented here 

represents each year from 2005-2017 regardless of whether a World Bank 

survey was conducted in that location for that year. And second, due to 

variation in the number of observations between years and region. 
8 Based at the mean value-added labor of $6.37 
9 At the value-added labor mean of $6.37 
10 At the value-added capital mean of $9.46 
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average temperatures will have economically significant effects on firm-

level input productivity. Of course, climate change may ultimately affect 

global average temperatures by more or less than 2°C. To account for this, 

trends in how productivity is predicted to change for a change in global 

average temperatures between 0.5°C to 4.5°C are shown in Figure 2 and 

Figure 3. For Figure 2, using the statistically significant point estimates 

of very warm days from the value-added Hot & Cold Model, at higher levels 

of global warming, labor is predicted to be 17 percent less productive at 

4°C. Importantly, for the average firm with a mean of $6.37 of value-added 

labor per dollar spent, the marginal benefit of labor is predicted to turn 

negative if global temperatures were to rise to about 3.8°C. Figure 3 looks 

at the effect of unstable weather and climate change as investigated in the 

value-added version of the Extreme Weather Model. Here, although labor at 

the margin is still productive across all global warming scenarios, the net 

marginal benefit for each additional unit of capital for the average firm 

would turn negative if global average temperatures increase by about 3.1°C. 

At this point unstable weather would incentivize firms to switch to more 

labor.  
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Figure 2 Climate Change and VA Productivity - Hot & Cold Model: Days >4°C 

 

Figure 3 Climate Change and VA Productivity -Extreme Weather Model 

 

7 Conclusion 

In this paper I provide clear evidence of a relationship between 

temperature and productivity for firms in developing countries. Results 
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indicate that manufacturing inputs are affected by temperature variation 

from long-term monthly averages, not just very warm days. I obtain evidence 

to suggest that labor and TFP are adversely affected by large increases in 

temperature compared to average trends, capital by large decreases, but all 

three by large variations in daily temperature means and maximums. This has 

obvious implications if climate change produces a less stable climate that 

leads to greater variation in daily temperatures. For example, if climate 

change primarily manifests as global warming proxied as higher ambient or 

peak temperatures throughout the day, then value-added labor will become 

less productive, providing incentives for firms to switch from labor to 

capital inputs. In this scenario, climate adaptation policy must consider 

risks to labor’s share of production, and any likely affect climate change 

will have on a range of market outcomes including unemployment and returns 

to education. Alternatively, if climate change primarily manifests as a 

less stable climate, then all forms of productivity will suffer, but 

capital most of all. In this scenario, climate adaptation would require 

firms to invest in more capital for the same level of output, or switch to 

more labor or technical efficiency. Governments may also need to consider 

more investment in climate abatement strategies such as a robust and 

reliable electricity grid. Regardless, manufacturing efficiency will be 

adversely affected by climate change due to greater variation in average 

temperatures, resulting in lower economic growth for a given level of 

inputs. 

Ultimately, my results present a complex relationship between weather 

and input productivity in the developing world, as evidenced by the 

different results between value-based and output-based productivity and 

between different models and types of input productivity. As such, more 

research on how climate change will affect input productivity and what 

climate change implies for firms and their efficient allocation of inputs 

is warranted. 



28 

 

8 References 

Abadie, A., Athey, S., Imbens, G., & Wooldridge, J. (2017). When Should You 

Adjust Standard Errors for Clustering? NBER Working Paper Series, No. 

24003. https://doi.org/10.3386/w24003 

Altman, D. G. (2014). Categorizing Continuous Variables. In Wiley StatsRef: 

Statistics Reference Online. 

https://doi.org/doi:10.1002/9781118445112.stat04857 

Andronova, N. G., & Schlesinger, M. E. (2001). Objective Estimation of the 

Probability Density Function for Climate Sensitivity. Journal of 

Geophysical Research, 106, 22605–22612. 

Anenberg, S. C., Miller, J., Minjares, R., Du, L., Henze, D. K., Lacey, F., 

Malley, C. S., Emberson, L., Franco, V., Klimont, Z., & Heyes, C. 

(2017). Impacts and mitigation of excess diesel-related NOx emissions 

in 11 major vehicle markets. Nature, 545, 467. 

https://doi.org/10.1038/nature22086 

Auffhammer, M., Hsiangy, S. M., Schlenker, W., & Sobelz, A. (2013). Using 

weather data and climate model output in economic analyses of climate 

change. Review of Environmental Economics and Policy, 7(2), 181–198. 

https://doi.org/10.1093/reep/ret016 

Barreca, A., Deschênes, O., & Guldi, M. (2015). Maybe Next Month? 

Temperature Shocks, Climate Change, and dynamic adjustments in birth 

rates. In NBER Working Paper (Working Paper 21681). 

http://www.nber.org/papers/w21681 

Berkeley Earth. (2019). Daily Land (Experimental; 1880 – Recent). 

Bovenberg, A. L., & Smulders, S. (1995). Environmental quality and 

pollution --- augmenting technological change in a two-sector 

endogenous growth model. Journal of Public Economics, 57, 369–391. 

Burke, M., Hsiang, S. M., & Miguel, E. (2015). Global non-linear effect of 

temperature on economic production. Nature, 527(7577), 235–239. 

https://doi.org/10.1038/nature15725 

Cachon, G. P., Gallino, S., & Olivares, M. (2012). Severe Weather and 



29 

 

Automobile Assembly Productivity. 1–27. 

https://doi.org/http://dx.doi.org/10.2139/ssrn.2099798 

Cai, X., Lu, Y., & Wang, J. (2016). The Impact of Temperature on 

Manufacturing Worker Productivity : Evidence from Personnel Data. 

Central Intelligence Agency. (2016). The World Factbook 2016-17. 

https://www.cia.gov/library/publications/the-world-factbook/index.html 

Chang, T., Zivin, J. G., Gross, T., & Neidell, M. (2016). Particulate 

pollution and the productivity of pear packers. American Economic 

Journal: Economic Policy, 8(3), 141–169. 

https://doi.org/10.1257/pol.20150085 

Cobb, C. W., & Douglas, P. H. (1928). The Theory of Production. American 

Economic Review, 18, 139–165. 

Cole, M. A., Elliott, R. J. R., & Shimamoto, K. (2005). Industrial 

characteristics, environmental regulations and air pollution: An 

analysis of the UK manufacturing sector. Journal of Environmental 

Economics and Management, 50(1), 121–143. 

https://doi.org/10.1016/j.jeem.2004.08.001 

Dell, M., Jones, B. F., & Olken, B. A. (2009). Temperature and Income: 

Reconciling New Cross-Sectional and Panel Estimates. NBER Working 

Paper, Working Pa. http://www.nber.org/papers/w14680 

Dell, M., Jones, B. F., & Olken, B. A. (2012). Temperature shocks and 

economic growth: Evidence from the last half century. American Economic 

Journal: Macroeconomics, 4(3), 66–95. 

https://doi.org/10.1257/mac.4.3.66 

Deschênes, O., & Greenstone, M. (2011). Climate Change, Mortality, and 

Adaptation: Evidence from Annual Fluctuations in Weather in the US. 

American Economic Journal: Applied Economics, 3(October), 152–185. 

Deschênes, O., & Greenstone, M. (2012). The Economic Impacts of Climate 

Change : Evidence from Agricultural Output and Random Fluctuations in 

Weather : Reply. 102(7), 3761–3773. 

Fisher, A., Hanemann, W., Roberts, M., & Schlenker, W. (2012). The Economic 



30 

 

Impacts of Climate Change : Evidence from Agricultural Output and 

Random Fluctuations in Weather : Comment. AER, 102(7), 3749–3760. 

Francis, D. C., & Karalashvili, N. (2017). Firm Level Productivity 

Estimates: Methodological Note. 

Gaylord, S., & Hancock, K. J. (2013). Developing world: national energy 

strategies. Edward Elgar Publishing. 

https://doi.org/https://doi.org/10.4337/9781781007907.00020 

Graff Zivin, J., Hsiang, S. M., & Neidell, M. (2018). Temperature and Human 

Capital in the Short and Long Run. Journal of the Association of 

Environmental and Resource Economists, 5(1), 77–105. 

https://doi.org/10.1086/694177 

Hallegatte, S., Bangalor, M., Bonzanigo, L., Fay, M., Kane, T., Narloch, 

U., Rozenberg, J., Treguer, D., & Vogt-Schilb, A. (2016). Shock Waves: 

Managing the Impacts of Climate Change on Poverty (Vol. 59, Issue 1). 

World Bank Group. 

IPCC. (1996). Climate Change 1995. The Science of Climate Change. Cambridge 

University Press. 

IPCC. (2007). Climate Change 2007 The Physical Science Basis (Cambridge 

University Press (Ed.)). 

Kalkuhl, M., & Wenz, L. (2020). The impact of climate conditions on 

economic production. Evidence from a global panel of regions. Journal 

of Environmental Economics and Management, 103, 102360. 

https://doi.org/https://doi.org/10.1016/j.jeem.2020.102360 

Lan, L., Wargocki, P., & Lian, Z. (2011). Quantitative measurement of 

productivity loss due to thermal discomfort. Energy and Buildings, 

43(5), 1057–1062. https://doi.org/10.1016/j.enbuild.2010.09.001 

Martin, S., & Smith, P. C. (2005). Multiple Public Service Performance 

Indicators : Toward an Integrated Statistical Approach. JPART, 15(4), 

599–613. 

Melillo, J. M., Richmond, T. (T. C. ., & Yohe, G. W. (Eds.). (2014). 

Climate Change Impacts in the United States: The Third National Climate 



31 

 

Assessment. U.S. Global Change Research Program. 

https://doi.org/doi:10.7930/J0Z31WJ2 

Mortier, R. M., Orszulik, S. T., & Fox, M. F. (1992). Chemisty and 

Technology of Lubricants. Springer. 

Niemelä, R., Hannula, M., Rautio, S., Reijula, K., & Railio, J. (2002). The 

Effect of Air Temperature on Labour Productivity in Call Centres - A 

Case Study. Energy and Buildings, 34(8), 759–764. 

Noy, I. (2009). The macroeconomic consequences of disasters. Journal of 

Development Economics, 88(2), 221–231. 

https://doi.org/10.1016/j.jdeveco.2008.02.005 

Noy, I., & Nualsri, A. (2008). What do Exogenous Shocks Tell Us about 

Growth Theories ? University of Hawaii Working Paper No. 07-28. 

Rohde, R. (2013). Comparison of Berkeley Earth, NASA GISS, and Hadley CRU 

averaging techniques on ideal synthetic data. Berkeley Earth Memo. 

http://static.berkeleyearth.org/memos/robert-rohde-memo.pdf 

Rohde, R., A. Muller, R., Jacobsen, R., Muller, E., & Wickham, C. (2013). A 

New Estimate of the Average Earth Surface Land Temperature Spanning 

1753 to 2011. Geoinformatics & Geostatistics: An Overview, 01(01), 1–7. 

https://doi.org/10.4172/2327-4581.1000101 

Schlenker, W., & Roberts, M. J. (2009). Nonlinear temperature effects 

indicate severe damages to U.S. crop yields under climate change. 

Proceedings of the National Academy of Sciences, 106(37), 15594–15598. 

https://doi.org/10.1073/pnas.0906865106 

Sorenson, P. B., & Whitta-Jacobsen, H. J. (2010). Introducing Advanced 

Macroeconomics (2nd ed.). McGraw Hill. 

Sudarshan, A., Somanathan, E., Somanathan, R., & Tewari, M. (2015). The 

Impact of temperature on productivity and labor supply: evidence from 

Indian manufacturing. Working Paper No. 244, Centre for(2454), 50. 

http://www.cdedse.org/pdf/work244.pdf 

The World Bank. (2000). Measuring growth in total factor productivity. 

PREMnotes, September(42). 



32 

 

The World Bank. (2020). Enterprise Surveys. The World Bank. 

http://www.enterprisesurveys.org 

United Nations. (2015). Paris Agreement. 

World Bank Group Enterprise Analysis Unit. (2017). Firm Level Productivity 

Estimates. In Firm Level Productivity Estimates (pp. 1–12). 

Zellner, A. (1962). An efficient method of estimating seemingly unrelated 

regressions and tests for aggregation bias. Journal of the American 

Statistical Society, 57(298), 348–368. 

Zhang, P., Deschenes, O., Meng, K., & Zhang, J. (2018). Temperature Effects 

on Productivity and Factor Reallocation : Journal of Environmental 

Economics and Management, 88(March), 1–17. 

https://www.sciencedirect.com/science/article/abs/pii/S0095069617304588 

 

  



33 

 

9 Tables and Figures 

Table 2 World Bank Productivity Descriptive Statistics 

Productivity Measure/Region  Obs.  Mean  Std. Dev.  

Sales - Capital 28,861 16.12 56.28 

Africa 7,104 15.9 55.9 

East Asia - Pacific 3,543 21.2 61.8 

Europe and Central Asia 1,852 12.2 39 

Latin America 9,871 15.1 60.4 

Middle East and North Africa 2,336 11.9 40.5 

South Asia 4,155 18.8 55.7 

Sales - Labor 28,861 11.31 20.68 

Africa 7,104 10.1 17.4 

East Asia - Pacific 3,543 12.2 24 

Europe and Central Asia 1,852 10.7 22.7 

Latin America 9,871 8.8 14.3 

Middle East and North Africa 2,336 13.9 25.3 

South Asia 4,155 17.3 28.8 

Sales - ln(TFP) 28,861 2.56 1.39 

Africa 7,104 2.52 1.09 

East Asia - Pacific 3,543 2.75 1.58 

Europe and Central Asia 1,852 2.67 1.74 

Latin America 9,871 2.52 1.33 

Middle East and North Africa 2,336 2.67 1.43 

South Asia 4,155 2.44 1.56 

VA - Capital 28,861 9.46 33 

Africa 7,104 10 35 

East Asia - Pacific 3,543 13.3 41.8 

Europe and Central Asia 1,852 7 27.1 

Latin America 9,871 8.8 30.9 

Middle East and North Africa 2,336 7.9 30 

South Asia 4,155 8.8 29.7 

VA - Labor 28,861 6.37 12.18 

Africa 7,104 6.4 13.3 

East Asia - Pacific 3,543 7.1 14.3 

Europe and Central Asia 1,852 5.8 11.5 

Latin America 9,871 5.2 9.7 

Middle East and North Africa 2,336 8.2 13.5 

South Asia 4,155 7.6 12.7 

VA - ln(TFP) 28,861 2.79 1.41 

Africa 7,104 2.79 1.34 

East Asia - Pacific 3,543 2.82 1.38 

Europe and Central Asia 1,852 2.71 1.68 

Latin America 9,871 2.77 1.43 

Middle East and North Africa 2,336 2.98 1.45 

South Asia 4,155 2.71 1.38 
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Table 3 Berkeley Earth Descriptive Statistics (Firm Level) 

Count of days by region Obs. Mean Std. Dev.   

Neutral 28,660 287.9 71.2   

Africa 6,944  319.4   43.4  

East Asia - Pacific 3,543  258.9   74.3  

Europe and Central Asia 1,852  157.6   25.4  

Latin America 9,830  299.6   72.4  

Middle East and North Africa 2,336  256.4   55.2  

South Asia 4,155  307.9   38.9  

Large Negative 28,660 7.29 12.7 

Africa 6,944  1.7   3.5  

East Asia - Pacific 3,543  9.5   14.3  

Europe and Central Asia 1,852  32.3   12.6  

Latin America 9,830  8.4   13.4  

Middle East and North Africa 2,336  5.8   6.4  

South Asia 4,155  1.9   5.0  

2C to 4C Lower 28,660 23.94 30.9 

Africa 6,944  11.6   15.6  

East Asia - Pacific 3,543  56.5   60.8  

Europe and Central Asia 1,852  44.2   9.0  

Latin America 9,830  18.8   21.8  

Middle East and North Africa 2,336  23.8   12.2  

South Asia 4,155  20.0   19.3  

2C to 4C Higher 28,660 35.1 28.2 

Africa 6,944  28.8   24.6  

East Asia - Pacific 3,543  31.4   26.6  

Europe and Central Asia 1,852  71.1   11.3  

Latin America 9,830  29.7   28.5  

Middle East and North Africa 2,336  58.2   30.2  

South Asia 4,155  32.5   18.4  

Large Positive 28,660 11.8 20.3 

Africa 6,944  4.4   7.7  

East Asia - Pacific 3,543  9.8   20.2  

Europe and Central Asia 1,852  60.8   24.8  

Latin America 9,830  9.5   16.4  

Middle East and North Africa 2,336  21.8   16.1  

South Asia 4,155  3.6   5.5  
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Table 4 Other Summary Statistics 

Firm Counts by Latitude 
  

 Count Proportion 

North of 60°N Latitude 242 0.01 

North of 40°N Latitude 2,157 0.07 

North of 20°N Latitude 7,239 0.25 

Within 20° Latitude of Equator 14,828 0.51 

South of 20°S Latitude 4,395 0.15 

   
Firm Counts by Country and Firm Size Count Proportion 

Low Income Country 17,518 0.61 

High Income Country 11,343 0.39 

Medium Sized Firm 10,944 0.38 

Large Sized Firm 6,147 0.21 

   
Firms by ISIC Code Count Proportion 

15 & 16 6,128 0.21 

17 1,953 0.07 

18 3,815 0.13 

19 679 0.02 

20 831 0.03 

21 401 0.01 

22 1,030 0.04 

23 & 24 2,545 0.09 

25 1,699 0.06 

26 1,680 0.06 

27 717 0.02 

28 2,536 0.09 

29 1,449 0.05 

30, 31, 32, & 33 994 0.03 

34 & 35 551 0.02 

36 1,853 0.06 
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Table 5 Hot & Cold Model: Temperature variation from monthly mean on Value-added Labor productivity 

 SURE 1/3 (Labor Productivity) 

  (1) (2) (3) (4) (5) 

Each day > 4 degrees C below than mean 
-0.330*** -0.116 -0.121 -0.059 -0.02 

(0.082) (0.084) (0.083) (0.089) (0.095) 

      

Per day 2 to 4 degrees C below mean 
0.101*** -0.008 -0.012 0.034 0.091 

(0.031) (0.051) (0.050) (0.053) (0.055) 

      

Per day 2 to 4 degrees C above mean 
0.099** 0.063 0.086** 0.075* -0.005 

(0.042) (0.039) (0.038) (0.040) (0.043) 

      

Per day > 4 degrees C above mean 
-0.182*** -0.171*** -0.173*** -0.171*** -0.159** 

(0.053) (0.053) (0.052) (0.060) (0.072) 

 
     

Medium Company (20-100 Employees) 
  

9.752*** 10.360*** 10.792*** 

 
  

(1.382) (1.372) (1.365) 

 
     

Large Company (over 100 Employees) 
  

17.691*** 18.423*** 18.722*** 

 
  

(1.755) (1.736) (1.728) 

 
     

Low Income Country 
  

4.835** 4.193** 1.081 

 
  

(2.134) (2.033) (2.151) 

 
     

Regional Controls 
   

Yes Yes 

Industry & Year FE 
 

Yes Yes Yes Yes 

Latitudinal Controls 
    

Yes 

Latitudinal by Regional Controls 
    

Yes 

      
Constant 130.469*** 101.655*** 92.027*** 97.287*** 102.976*** 

  (1.857) (2.739) (3.185) (5.456) (5.633) 
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Table 6 Hot & Cold Models: Temperature variation from monthly means on output and value-Added L, K, and TFP 

productivity 

  Seemingly Unrelated Regressions 

 Output-Based Productivity (1) Value Added Productivity (2) 

 L K TFP L K TFP 

Each day > 4 degrees C below than mean 
-0.061 -0.513*** -0.038 -0.02 -0.587*** -0.139 

(0.101) (0.196) (0.079) (0.095) (0.217) (0.112) 

 
     

 

Per day 2 to 4 degrees C below mean 
0.231*** 0.192 -0.037 0.091 -0.014 -0.008 

(0.062) (0.137) (0.049) (0.055) (0.139) (0.066) 

 
     

 

Per day 2 to 4 degrees C above mean 
-0.129*** -0.038 0.067** -0.005 0.066 0.035 

(0.045) (0.077) (0.030) (0.043) (0.168) (0.047) 

 
   

   

Per day > 4 degrees C above mean 
-0.105 0.013 -0.058 -0.159** 0.09 -0.118 

(0.076) (0.134) (0.062) (0.072) (0.079) (0.088) 

 
     

 

Constant 
149.02*** 187.80*** 286.12*** 102.98*** 145.19*** 321.18*** 

(5.635) (9.418) (3.556) (5.633) (10.030) (5.277) 

          

Observations 40280 40280 40280 36049 36049 36049 

Note: Standard errors are clustered by survey strata and are in parentheses * p<0.10; ** p<0.05; *** 

p<0.01. Key dependent variables represent the count of days in the previous financial year above or 

below the mean average temperature for that region/city for that month compared to the count of days 

that were within 2°C of the mean for that month. Productivity is expressed as output/sales and value-

add per cost of labor, capital, and TFP respectively. Only the full empirical models are shown. Full 

results with controls are available in the online appendix. All values are in 2009 USD terms.   
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Table 7 Extreme Weather Model: Temperature variation from the monthly mean on output and value-added L, K, 

and TFP productivity 

  Seemingly Unrelated Regressions 

 Output-Based Productivity (1) Value-Added Productivity (2) 

  L K TFP L K TFP 

Each day with > 4 degrees C below and 

> 4 degrees C above mean 

-0.087** -0.190** -0.05 -0.105** -0.233** -0.126** 

(0.044) (0.089) (0.038) (0.043) (0.102) (0.052) 

 
      

Medium Company (20-100 Employees) 
15.688*** 12.004*** 8.873*** 10.818*** 5.391** 16.917*** 

(1.399) (2.413) (1.031) (1.365) (2.470) (1.506) 

 
      

Large Company (over 100 Employees) 
29.027*** 25.883*** 11.602*** 18.731*** 16.082*** 26.145*** 

(1.748) (3.123) (1.282) (1.728) (3.289) (2.029) 

 
      

Low Income Country 
4.596** -27.037*** -29.353*** 0.964 -28.660*** -36.921*** 

(2.089) (3.864) (1.710) (2.148) (4.048) (2.382) 

 
  

 
  

 

Constant 
149.010*** 187.700*** 286.126*** 102.978*** 145.082*** 321.180*** 

(5.626) (9.425) (3.556) (5.630) (10.033) (5.279) 

            

Observations 40280 40280 40280 36049 36049 36049 
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Table 8 Daily Max. Models: Extreme daily temperatures on output and value-added L, K, and TFP Productivity 

 Seemingly Unrelated Regressions 

 Output-Based Productivity (1) Value-Added Productivity (2) 

 L K TFP L K TFP 

Per day of max temp > 4° C above 

mean 

-0.142** -0.184 -0.054 -0.129** -0.185 -0.178** 

-0.068 -0.113 -0.051 -0.065 -0.121 -0.073 

 
      

Per day with max temp 2 to 4° C 

above mean 

-0.118*** 0.176*** 0.053** -0.001 0.310*** 0.070* 

-0.034 -0.067 -0.024 -0.033 -0.068 -0.037 

 
      

Medium Company (20-100 Employees) 
15.671*** 12.255*** 8.818*** 10.751*** 5.625** 16.889*** 

-1.388 -2.406 -1.029 -1.357 -2.45 -1.499 

 
      

Large Company (over 100 Employees) 
29.038*** 26.001*** 11.505*** 18.665*** 16.096*** 26.046*** 

-1.744 -3.133 -1.28 -1.722 -3.282 -2.017 

 
  

 
  

 

Constant 
150.391*** 183.303*** 287.446*** 103.670*** 139.973*** 321.803*** 

-5.448 -9.062 -3.65 -5.459 -9.443 -5.283 

        

Observations 40280 40280 40280 36049 36049 35741 

Note: Standard errors are clustered by survey strata and are in parentheses * p<0.10; ** p<0.05; *** p<0.01. 

Key dependent variables represent the count of days in the previous financial year above or below the mean 

daily maximum temperature for that region/city for that month compared to the count of days that were within 

2° of the mean of the daily maximum for that month. Productivity is expressed as output/sales and value-add 

per cost of labor, capital, and TFP respectively. Only the full empirical models are shown. Base company is 

a small company of less than 20 employees. Regions and income levels are defined by the World Bank. Full 

results with controls are available in the online appendix. All values are in 2009 USD terms.   
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Table 9 Average Climate Effects on Productivity 

 Period 2012-2017 compared 

to 2005-2010 

  Estimated Climate Effect on 

VA Productivity    

 

Avg. 

Increase 

in Temp. 

Average 

increase in 

days of extreme 

weather 

@2°C OLS In Percent 
Per $ 

Invested/Spent 

  
Model of each day averaging > 4°C above long-term monthly trends 

 0.15°C 3.97 Days 
52.99 

Days 
   

 

Est. Effect on Labor 

   

-.159*** -8.43% 54 cents 

Est. Effect on TFP 

   

-0.118 -6.25% 

 

  
Model of each day averaging > 4°C above or below long-term trends 

  2.17 days 
28.97 

Days 
   

  

Est. Effect on Labor  

  
-0.105** -3.04% 19 cents 

 

Est. Effect on Capital  

  
-.233** -6.75% 63.84 cents 

 

Est. Effect on TFP  

  
-0.126** -3.65% 

   

Note: Due to rounding in the table, numbers will not reconcile directly. Average increase in temperature 

is calculated using the mean annual global temperature anomaly for 2005-2010 of 0.966°C per year 

compared to 1.116°C per year in 2012-2017. All Values are in 2009 USD terms. All estimates of the effect 

of climate on VA productivity are done at the mean value for each measure of productivity. 

 

 


